SAR y el incremento de temperatura en un modelo de cabeza compuesto por varios tejidos producidos por dos dispositivos WiFi que funcionan en la banda de 2.4 GHz

Autores/as

DOI:

https://doi.org/10.46842/ipn.cien.v27n2a10

Palabras clave:

dispositivos Wi-Fi, distribución del SAR, ecuación de bio-calor, incremento de temperatura, método FDTD

Resumen

En este trabajo se presenta un análisis de la tasa de absorción especifica (conocida como SAR, por sus siglas en inglés) debida a la exposición de dos fuentes de campo electromagnético en un modelo de cabeza humana; formado por diferentes tejidos. Las fuentes de campo son un modem Wi-Fi y un telefono celular operando ambos a la frecuencia de 2.4 GHz. El campo eléctrico necesario en el cálculo del SAR se obtiene usando una simulación mediante el método de diferencias finitas en el dominio del tiempo (FDTD por sus siglas en inglés). Con el proposito de evaluar como interactua el campo electromagnético con los diferentes tejidos que componen la cabeza humana, especialmente los del cerebro, el SAR es desglosado por tejido y los datos son presentados en diagramas de caja, nueve diferentes tejidos fueron usados en la simulación. Finalmente, utilizando la ecuación de bio-calor en su forma más simple se realiazó un análisis sencillo del incremento de temperatura en cada tejido.

Referencias

International Agency Research of Cancer, Press Release no. 200: Interphone Study Reports on Mobile Phone Use and Brian Cancer Risk. World Health Organization, 2010.

INTERPHONE Study Group, “Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study”, Int J Epidemiol. Vol. 39, no. 3, 2010, pp. 675-94.

INTERPHONE Study Group, “Acoustic neuroma risk in relation to mobile telephone use: Results of the INTERPHONE international case–control study”, Cancer Epidemiology, vol. 35, no. 5, Oct. 2011, pp. 453-464, doi: https://doi.org/10.1016/j.canep.2011.05.012

ICNIRP, “Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494-522.

IEEE Standard C95.1-2005. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields 3 kHz to 300 GHz. Institute of Electrical and Electronics Engineers, 2005.

FCC, In the Matter of Reassessment of Federal Communications Commission Radio Frequency Exposure Limits and Policies, Federal Communications Commission, 2003.

INEGI. Encuesta nacional sobre disponibilidad y uso de tecnologías de la información en los hogares (ENDUTIH) 2021. Comunicado de prensa núm. 350/22. Jul. 4 2022. Available on: https://www.inegi.org.mx/programas/dutih/2021/

Asociación de internet MX, 18° Estudio sobre los hábitos de personas usuarias de internet en México 2022,

May 2022. Available on: https://www.asociaciondeinternet.mx/estudios/habitos-de-internet

NCRP Report No.67, Radiofrequency Electromagnetic Fields Properties, Quantities and Units, Biophysical Interaction and Measurements, National Council on Radiation Protection and Measurements, 1981.

H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, J Appl Physiol., vol. 1, no. 2, 1948, pp. 93-122.

W. Wulff, “The Energy Conservation Equation for Living Tissue”, IEEE Trans Biomed Eng., vol. 21, no. 6, 1974, pp. 494-495.

A. Shitzer, J. C. Chato, “Analytical Solutions to the Problem of Transient Heat Transfer in Living Tissue”, J Biomech Eng., vol. 100, no. 4, 1978, pp. 202-210.

A. Hirata, M. Morita, T. Shiozawa, “Temperature Increase in the Human Head due to a Dipole Antenna at Microwave Frequencies”, IEEE Trans Electromagn Compat., vol. 45, no. 1, 2003, pp. 109-116.

K. S. Yee, “Numerical Solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans on Antennas Propag., vol. 14, no. 3, 1966, pp. 302-307.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New York: IEEE Press Series, 2000.

A. Elsherbeni, V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB simulations, North Carolina: SciTech Publishing Inc., 2009

J. B. Schneider, Understanding the Finite-Difference Time-Domain Method. School of Electrical Engineering and Computer Science Washington State University. [accessed 2023 July 26], 2023, http://www.eecs.wsu.edu/~schneidj/ufdtd/.

R. Espinosa, I. Ezequiel, Análisis de la distribución del SAR producido por dispositivos de comunicación móvil en modelos de tejido usando el método FDTD [Analysis of the SAR distribution produced by devices of mobile communications in models of tissue using the FDTD method]. [dissertation] Mexico City: Instituto Politécnico Nacional, 2019.

J. A. Roden, S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media”, Microw Opt Technol Lett., vol. 27, no. 5, 2000, pp. 334-339.

ERC, Decision on harmonized frequencies technical characteristics and exemption from individual licensing of Short Range Devices used for Radio Local Area Networks (RLANs) operating in the frequency band 2400-2483.5 MHz. European Radiocommunications Committee, 2001.

ERC Recommendation 70-3, Relating to the use of Short Range Devices (SRD). European Radiocommunications Committee, 2017.

ITU 2014. International, regional and National regulation of SRD’s, Geneva Switzerland, June 3. International Telecommunication Union. [accessed: 2023 June 1], 2014, https://www.itu.int/en/ITU-R/study-groups/workshops/RWP1B-SRD-UWB-14/Presentations/International,%20regional%20and%20national%20regulation%20of%20SRDs.pdf

R. Courant, K. Friedrichs, H. Lewy, “On the Partial Difference Equations of Mathematical Physics”, IBM J Res Dev., vol. 11, no. 2, 1967, pp. 215–234.

K. Wendel, D. Stoliar, J. Malmivvo, J. Hyttinen, “Measuring Tissue Thickness of the Human Head Using Centralized and Normalized Trajectories”, In Proceedings of the Conference Consciousness and its Measures; Nov 29.-Dec 1.2009; St. Raphael hotel, Limassol, Cyprus, 2009, pp. 112-113.

A. M. Gilroy, B. R. MacPherson, L. M. Roy, Atlas of Anatomy. 2nd ed., New York: Thieme, 2012.

H. J. Krzywicki, S. K. Kenneth, Human Body Density and Fat of an Adult Male Population as Measured by Water Displacement. Colorado (CO). US Army Medical Research Nutrition. Laboratory (US), 1966.

C. Gabriel, S. Gabriel, E. Corthout, “The dielectric properties of biological tissues: I”, Literature Survey. Phys. Med. Biol., vol. 41, no. 11, 1996, pp. 2231-2249.

S. Gabriel, R. W. Lau, C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the

Frequency range 10 Hz to 20 GHz”, Phys. Med. Biol., vol. 41, no. 11, 1996, pp. 2251-2269.

S. Gabriel, R. W. Lau, C. Gabriel, “The dielectric properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues”, Phys. Med. Biol., vol. 41, no. 11, 1996, pp. 2271-2293.

O. P. Gandhi, Q. X. Li, G. Kang, “Temperature Rise for the Human Head for Cellular Telephones and for Peak SARs Prescribed in Safety Guidelines”, IEEE Trans Microw Theory Tech., vol. 49, no. 9, 2001, pp. 1607-1613.

R. McGill, J. W. Tukey, W. A. Larsen, “Variations at Box Plots”, Am Stat., vol. 32, no. 1, 1978, pp.12-16.

W. Esty, J. Banfield, “The Box-Percentile Plot”, J Stat Softw., vol. 8, no. 17, 2003, pp. 1-14.

Y. Okano, K. Ito, I. Ida, M. Takahashi, “The SAR Evaluation Method by a Combination of Thermographic Experiments and Biological Tissue-Equivalent Phantoms”, IEEE Trans Microw Theory Tech., vol. 48, no. 11, 2003, pp. 2094-2103.

J. C. Lin, “Specific Absorption Rates (SARs) Induced in Head Tissues by Microwave Radiation from Cell Phones”, IEEE Antennas Propag Maga., vol. 42, no. 5, 2000, pp. 138-139.

N. Ticaud, S. Kohler, P. Jarrige, L. Duvallaret, G. Gaborit, R. P. O’Connor, D. Arnaud-Cormos, P. Leveque,“Specific Absorption Rate Assessment Using Simultaneous Electric Field and Temperature Measurements”,IEEE Antennas Wirel Propag Lett., vol. 11, 2012, pp. 252-255.

Descargas

Publicado

10-09-2024

Número

Sección

Investigación

Cómo citar

SAR y el incremento de temperatura en un modelo de cabeza compuesto por varios tejidos producidos por dos dispositivos WiFi que funcionan en la banda de 2.4 GHz. (2024). Científica, 27(2). https://doi.org/10.46842/ipn.cien.v27n2a10