SAR and Temperature Increase in a Head Model Composed of Several Tisues Produced by Two WiFi Devices Working on the 2.4 GHz Band

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v27n2a10

Keywords:

Bio-heat equation, FDTD method, SAR distribution, Temperature rate, WiFi devices

Abstract

An analysis of the specific absorption rate (SAR) in a model of a human head, composed of several tissues, as a result of the exposure to two electromagnetic sources working on the 2.4 GHz WiFi band is presented; the devices are a WiFi modem and a cell phone. The electric field necessary to get the SAR is calculated using a simulation based on the finite-difference time-domain (FDTD) method. With a view to evaluating how the electromagnetic field interacts in different tissues, specially in brain tissues, the SAR is broken down by tissue, and the data are displayed using box-plots. Nine other tissues were used in the head model. Finally, using a simple bio-heat equation, a simple analysis of the temperature increase is done as well.

References

International Agency Research of Cancer, Press Release no. 200: Interphone Study Reports on Mobile Phone Use and Brian Cancer Risk. World Health Organization, 2010.

INTERPHONE Study Group, “Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study”, Int J Epidemiol. Vol. 39, no. 3, 2010, pp. 675-94.

INTERPHONE Study Group, “Acoustic neuroma risk in relation to mobile telephone use: Results of the INTERPHONE international case–control study”, Cancer Epidemiology, vol. 35, no. 5, Oct. 2011, pp. 453-464, doi: https://doi.org/10.1016/j.canep.2011.05.012

ICNIRP, “Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz)”, Health Phys., vol. 74, no. 4, pp. 494-522.

IEEE Standard C95.1-2005. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields 3 kHz to 300 GHz. Institute of Electrical and Electronics Engineers, 2005.

FCC, In the Matter of Reassessment of Federal Communications Commission Radio Frequency Exposure Limits and Policies, Federal Communications Commission, 2003.

INEGI. Encuesta nacional sobre disponibilidad y uso de tecnologías de la información en los hogares (ENDUTIH) 2021. Comunicado de prensa núm. 350/22. Jul. 4 2022. Available on: https://www.inegi.org.mx/programas/dutih/2021/

Asociación de internet MX, 18° Estudio sobre los hábitos de personas usuarias de internet en México 2022,

May 2022. Available on: https://www.asociaciondeinternet.mx/estudios/habitos-de-internet

NCRP Report No.67, Radiofrequency Electromagnetic Fields Properties, Quantities and Units, Biophysical Interaction and Measurements, National Council on Radiation Protection and Measurements, 1981.

H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, J Appl Physiol., vol. 1, no. 2, 1948, pp. 93-122.

W. Wulff, “The Energy Conservation Equation for Living Tissue”, IEEE Trans Biomed Eng., vol. 21, no. 6, 1974, pp. 494-495.

A. Shitzer, J. C. Chato, “Analytical Solutions to the Problem of Transient Heat Transfer in Living Tissue”, J Biomech Eng., vol. 100, no. 4, 1978, pp. 202-210.

A. Hirata, M. Morita, T. Shiozawa, “Temperature Increase in the Human Head due to a Dipole Antenna at Microwave Frequencies”, IEEE Trans Electromagn Compat., vol. 45, no. 1, 2003, pp. 109-116.

K. S. Yee, “Numerical Solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans on Antennas Propag., vol. 14, no. 3, 1966, pp. 302-307.

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New York: IEEE Press Series, 2000.

A. Elsherbeni, V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB simulations, North Carolina: SciTech Publishing Inc., 2009

J. B. Schneider, Understanding the Finite-Difference Time-Domain Method. School of Electrical Engineering and Computer Science Washington State University. [accessed 2023 July 26], 2023, http://www.eecs.wsu.edu/~schneidj/ufdtd/.

R. Espinosa, I. Ezequiel, Análisis de la distribución del SAR producido por dispositivos de comunicación móvil en modelos de tejido usando el método FDTD [Analysis of the SAR distribution produced by devices of mobile communications in models of tissue using the FDTD method]. [dissertation] Mexico City: Instituto Politécnico Nacional, 2019.

J. A. Roden, S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media”, Microw Opt Technol Lett., vol. 27, no. 5, 2000, pp. 334-339.

ERC, Decision on harmonized frequencies technical characteristics and exemption from individual licensing of Short Range Devices used for Radio Local Area Networks (RLANs) operating in the frequency band 2400-2483.5 MHz. European Radiocommunications Committee, 2001.

ERC Recommendation 70-3, Relating to the use of Short Range Devices (SRD). European Radiocommunications Committee, 2017.

ITU 2014. International, regional and National regulation of SRD’s, Geneva Switzerland, June 3. International Telecommunication Union. [accessed: 2023 June 1], 2014, https://www.itu.int/en/ITU-R/study-groups/workshops/RWP1B-SRD-UWB-14/Presentations/International,%20regional%20and%20national%20regulation%20of%20SRDs.pdf

R. Courant, K. Friedrichs, H. Lewy, “On the Partial Difference Equations of Mathematical Physics”, IBM J Res Dev., vol. 11, no. 2, 1967, pp. 215–234.

K. Wendel, D. Stoliar, J. Malmivvo, J. Hyttinen, “Measuring Tissue Thickness of the Human Head Using Centralized and Normalized Trajectories”, In Proceedings of the Conference Consciousness and its Measures; Nov 29.-Dec 1.2009; St. Raphael hotel, Limassol, Cyprus, 2009, pp. 112-113.

A. M. Gilroy, B. R. MacPherson, L. M. Roy, Atlas of Anatomy. 2nd ed., New York: Thieme, 2012.

H. J. Krzywicki, S. K. Kenneth, Human Body Density and Fat of an Adult Male Population as Measured by Water Displacement. Colorado (CO). US Army Medical Research Nutrition. Laboratory (US), 1966.

C. Gabriel, S. Gabriel, E. Corthout, “The dielectric properties of biological tissues: I”, Literature Survey. Phys. Med. Biol., vol. 41, no. 11, 1996, pp. 2231-2249.

S. Gabriel, R. W. Lau, C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the

Frequency range 10 Hz to 20 GHz”, Phys. Med. Biol., vol. 41, no. 11, 1996, pp. 2251-2269.

S. Gabriel, R. W. Lau, C. Gabriel, “The dielectric properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues”, Phys. Med. Biol., vol. 41, no. 11, 1996, pp. 2271-2293.

O. P. Gandhi, Q. X. Li, G. Kang, “Temperature Rise for the Human Head for Cellular Telephones and for Peak SARs Prescribed in Safety Guidelines”, IEEE Trans Microw Theory Tech., vol. 49, no. 9, 2001, pp. 1607-1613.

R. McGill, J. W. Tukey, W. A. Larsen, “Variations at Box Plots”, Am Stat., vol. 32, no. 1, 1978, pp.12-16.

W. Esty, J. Banfield, “The Box-Percentile Plot”, J Stat Softw., vol. 8, no. 17, 2003, pp. 1-14.

Y. Okano, K. Ito, I. Ida, M. Takahashi, “The SAR Evaluation Method by a Combination of Thermographic Experiments and Biological Tissue-Equivalent Phantoms”, IEEE Trans Microw Theory Tech., vol. 48, no. 11, 2003, pp. 2094-2103.

J. C. Lin, “Specific Absorption Rates (SARs) Induced in Head Tissues by Microwave Radiation from Cell Phones”, IEEE Antennas Propag Maga., vol. 42, no. 5, 2000, pp. 138-139.

N. Ticaud, S. Kohler, P. Jarrige, L. Duvallaret, G. Gaborit, R. P. O’Connor, D. Arnaud-Cormos, P. Leveque,“Specific Absorption Rate Assessment Using Simultaneous Electric Field and Temperature Measurements”,IEEE Antennas Wirel Propag Lett., vol. 11, 2012, pp. 252-255.

Downloads

Published

10-09-2024

How to Cite

SAR and Temperature Increase in a Head Model Composed of Several Tisues Produced by Two WiFi Devices Working on the 2.4 GHz Band. (2024). Científica, 27(2). https://doi.org/10.46842/ipn.cien.v27n2a10