Diseño de absorbedor-emisor selectivo a base de nanotubos de carbono y tungsteno para aplicaciones termo-fotovoltaicas
DOI:
https://doi.org/10.46842/ipn.cien.v28n1a07Palabras clave:
cristal fotónico, emisión foto-termiónica, fotoelectricidadResumen
En esta investigación se formula el diseño de una celda solar termo-fotovoltaica que aumenta la eficiencia energética por medio de un proceso de emisión foto-termiónica. La celda propuesta busca transformar la luz solar en energía eléctrica asistida por un proceso térmico intermedio utilizando materiales nanoestructurados. Nanotubos de carbono alineados verticalmente actuarán como eficientes absorbedores de la luz solar para generar emisión de portadores térmicos y elevar su temperatura. El calor generado se transferirá por conducción a un cristal fotónico de tungsteno con un patrón de crecimiento periódico que emitirá selectivamente un espectro de energía el cual pueda ser absorbido por una celda fotovoltaica. El cambio de temperatura de los nanotubos de carbono, además de excitar al cristal fotónico, servirá para generar una corriente eléctrica por medio del efecto foto-termiónico. La suma de la corriente foto-termiónica a la corriente fotovoltaica aumenta la eficiencia energética de la celda en un 4.8%.
Referencias
D. Madrigal, “El romance entre México y las energías renovables,” energiahoy.com, 2023. Available: https://energiahoy.com/2021/02/24/el-romance-entre-mexico-y-las-energias-renovables/
G. Stephens, J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L'Ecuyer, P.W. Stackhouse Jr, M. Lebsock, T. Andrews, “An update on Earth’s energy balance in light of the latest global observations,” Nat. Geosci., vol. 5, pp. 691-696, 2012. https://doi.org/10.1038/ngeo1580
W. Grossmann, I. Grossmann, K.W. Steininger, “Solar electricity generation across large geographic areas, Part II: A Pan-American energy system based on solar,” Renew. Sustain. Energy Rev., vol. 32, pp. 983–993, 2014. https://doi.org/10.1016/j.rser.2014.01.003
Y. Wang, H. Liu, J. Zhu, “Solar thermophotovoltaics: Progress, challenges, and opportunities,” APL Mater., vol. 7, no. 080906, 2019. https://doi.org/10.1063/1.5114829
Y. Wang, L. Zhou, Y. Zhang, J. Yu, B. Huang, Y. Wang, Y. Lai, S. Zhu, J. Zhu, “Hybrid solar absorber–emitter by coherence-enhanced absorption for improved solar thermophotovoltaic conversion,” Adv. Opt. Mater., vol. 6, no. 1800813, 2018. https://doi.org/10.1002/adom.201800813
Z. Li, B. Bai, C. Li, Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon, vol. 96, pp. 641-646, 2016. https://doi.org/10.1016/j.carbon.2015.09.074
D. Fan, D. Fan, T. Burger, S. McSherry, B. Lee, A. Lenert, S.R. Forrest, “Near-perfect photon utilization in an air-bridge thermophotovoltaic cell,” Nature, vol. 586, pp. 237–241, 2020. https://doi.org/10.1038/s41586-020-2717-7
K. Qiu, A.C.S. Hayden, M.G. Mauk, O.V. Sulima, “Generation of electricity using InGaAsSb and GaSbTPV cells in combustion-driven radiant sources,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 68-81, 2006. https://doi.org/10.1016/j.solmat.2005.02.002
B. Maji, R. Chattopadhyay, “Design and optimization of high efficient GaSb homo-junction solar cell using GaSb intrinsic layer,” Microsyst. Technol., vol. 27, pp. 1-10, 2021. https://doi.org/10.1007/s00542-020-05125-9
R. Bera, Y. Binyamin, C. Frantz, R. Uhlig, S. Magdassi, D. Mandler, “Fabrication of Self-Cleaning CNT-Based Near-Perfect Solar Absorber Coating for Non-Evacuated Concentrated Solar Power Applications,” Energy Technol., vol. 8, no. 2000699, 2020. https://doi.org/10.1002/ente.202000699
J. García-Merino, C.L. Martínez-González, C.R. Torres-San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, C. Torres-Torres, «Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,» Mater. Sci. Eng. B, vol. 194, pp. 27-33, 2015. https://doi.org/10.1016/j.mseb.2014.12.022
H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, R.F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng., vol. 25, pp. 523-526, 2011. https://doi.org/10.1016/j.proeng.2011.12.130
K. Mizuno, J. Ishii, H. Kishida, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” PNAS, vol. 106, pp. 6044-6047, 2009. https://doi.org/10.1073/pnas.0900155106
Y. Yeng, M. Ghebrebrhan, P. Bermel, W.R. Chan, J.D. Joannopoulos, M. Soljačić, I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” PNAS, vol. 109, pp. 2280–2285, 2012. https://doi.org/10.1073/pnas.112014910
M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljacic, J. Joannopoulos1, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A, vol. 83, no. 033810, 2011. https://doi.org/10.1103/PhysRevA.83.033810
J. García-Merino, L. Fernández-Izquierdo, R. Villarroel, S.A. Hevia, “Photo-thermionic emission and photocurrent dynamics in low crystallinity carbon nanotubes,” J. Materiomics, vol. 7, pp. 271-280, 2021. https://doi.org/10.1016/j.jmat.2020.10.002
T. M. Tritt, Thermal conductivity: Theory, properties and applications, New York: Kluwer Academic / Plenum Publishers, 2004.
M. Shiraishi, M. Ata, “Work function of carbon nanotubes,” Carbon, vol. 39, pp. 1913-1917, 2001. https://doi.org/10.1016/S0008-6223(00)00322-5
F. Jin, A. Beaver, “High thermionic emission from barium strontium oxide functionalized carbon nanotubes thin film surface,” Appl. Phys. Lett., vol. 110, no. 213109, 2017. https://doi.org/10.1063/1.4984216
A. Mezzi, E. Bolli, S. Kaciulis, M. Mastellone, M. Girolami, V. Serpente, A. Bellucci, R. Carducci, R. Polini, D.M. Trucchi, “Work function and negative electron affinity of ultrathin barium fluoride films,” Surf. Interface Anal., vol. 52, pp. 968-974, 2020. https://doi.org/10.1002/sia.6832
I. Celanovic, N. Jovanovic, J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett., vol. 92, no. 193101, 2008. https://doi.org/10.1063/1.2927484
T. Gharbi, D. Barchiesi, S. Kessentini, R. Maalej, “Fitting optical properties of metals by Drude-Lorentz and partial-fraction models in the [0.5;6] eV range,” Opt. Mater. Express, vol. 10, pp. 1129-1162, 2020. https://doi.org/10.1364/OME.388060
D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys., vol. 119, no. 085101, 2016. https://doi.org/10.1063/1.4942216
V. Rinnerbauer, S. Ndao, Y. Xiang-Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačićab, I. Celanovicb, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci., vol. 5, pp. 8815-8823, 2012. https://doi.org/10.1039/C2EE22731B
V. Rinnerbauer, Y. Shen, J.D. Joannopoulos, M. Soljačić, F. Schäffler, I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express, vol. 22, pp. A1895-A1906, 2014. https://doi.org/10.1364/OE.22.0A1895
H. Ye, H. Wang, Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectrosc. Radiat. Transfer, vol. 158, pp. 119-126, 2015. https://doi.org/10.1016/j.jqsrt.2015.01.022
E. Rahman, A. Nojeh, “Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics,” Appl. Therm. Eng., vol. 224, no. 119993, 2023. https://doi.org/10.1016/j.applthermaleng.2023.119993
A. Datas, R. Vaillon, “Thermionic-enhanced near-field thermophotovoltaics,” Nano Energy, vol. 61, pp. 10-17, 2019. https://doi.org/10.1016/j.nanoen.2019.04.039
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Instituto Politécnico Nacional
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.