Design of selective absorber-emitter based on carbon nanotubes and tungsten for thermo-photovoltaic applications

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v28n1a07

Keywords:

photonic crystal, thermionic emission, photoelectricity

Abstract

In this research, the design of a thermophotovoltaic solar cell is formulated to increase energy efficiency through a photo-thermionic emission process. The proposed cell aims to transform sunlight into electrical energy assisted by an intermediate thermal process using nanostructured materials. Vertically aligned carbon nanotubes will act as efficient absorbers of sunlight to generate thermal carrier emission and elevate their temperature. The generated heat will be transferred by conduction to a tungsten photonic crystal with a periodic growth pattern that will selectively emit an energy spectrum which can be absorbed by a photovoltaic cell. The temperature change of the carbon nanotubes, in addition to exciting the photonic crystal, will serve to generate an electric current through the photo-thermionic effect. The addition of the photo-thermionic current to the photovoltaic current increases the energy efficiency of the cell by 4.8%.

References

D. Madrigal, “El romance entre México y las energías renovables,” energiahoy.com, 2023. Available: https://energiahoy.com/2021/02/24/el-romance-entre-mexico-y-las-energias-renovables/

G. Stephens, J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L'Ecuyer, P.W. Stackhouse Jr, M. Lebsock, T. Andrews, “An update on Earth’s energy balance in light of the latest global observations,” Nat. Geosci., vol. 5, pp. 691-696, 2012. https://doi.org/10.1038/ngeo1580

W. Grossmann, I. Grossmann, K.W. Steininger, “Solar electricity generation across large geographic areas, Part II: A Pan-American energy system based on solar,” Renew. Sustain. Energy Rev., vol. 32, pp. 983–993, 2014. https://doi.org/10.1016/j.rser.2014.01.003

Y. Wang, H. Liu, J. Zhu, “Solar thermophotovoltaics: Progress, challenges, and opportunities,” APL Mater., vol. 7, no. 080906, 2019. https://doi.org/10.1063/1.5114829

Y. Wang, L. Zhou, Y. Zhang, J. Yu, B. Huang, Y. Wang, Y. Lai, S. Zhu, J. Zhu, “Hybrid solar absorber–emitter by coherence-enhanced absorption for improved solar thermophotovoltaic conversion,” Adv. Opt. Mater., vol. 6, no. 1800813, 2018. https://doi.org/10.1002/adom.201800813

Z. Li, B. Bai, C. Li, Q. Dai, “Efficient photo-thermionic emission from carbon nanotube arrays,” Carbon, vol. 96, pp. 641-646, 2016. https://doi.org/10.1016/j.carbon.2015.09.074

D. Fan, D. Fan, T. Burger, S. McSherry, B. Lee, A. Lenert, S.R. Forrest, “Near-perfect photon utilization in an air-bridge thermophotovoltaic cell,” Nature, vol. 586, pp. 237–241, 2020. https://doi.org/10.1038/s41586-020-2717-7

K. Qiu, A.C.S. Hayden, M.G. Mauk, O.V. Sulima, “Generation of electricity using InGaAsSb and GaSbTPV cells in combustion-driven radiant sources,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 68-81, 2006. https://doi.org/10.1016/j.solmat.2005.02.002

B. Maji, R. Chattopadhyay, “Design and optimization of high efficient GaSb homo-junction solar cell using GaSb intrinsic layer,” Microsyst. Technol., vol. 27, pp. 1-10, 2021. https://doi.org/10.1007/s00542-020-05125-9

R. Bera, Y. Binyamin, C. Frantz, R. Uhlig, S. Magdassi, D. Mandler, “Fabrication of Self-Cleaning CNT-Based Near-Perfect Solar Absorber Coating for Non-Evacuated Concentrated Solar Power Applications,” Energy Technol., vol. 8, no. 2000699, 2020. https://doi.org/10.1002/ente.202000699

J. García-Merino, C.L. Martínez-González, C.R. Torres-San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, C. Torres-Torres, «Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,» Mater. Sci. Eng. B, vol. 194, pp. 27-33, 2015. https://doi.org/10.1016/j.mseb.2014.12.022

H. Wu, S. Vollebregt, A. Emadi, G. de Graaf, R. Ishihara, R.F. Wolffenbuttel, “Use of multi-wall carbon nanotubes as an absorber in a thermal detector,” Procedia Eng., vol. 25, pp. 523-526, 2011. https://doi.org/10.1016/j.proeng.2011.12.130

K. Mizuno, J. Ishii, H. Kishida, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” PNAS, vol. 106, pp. 6044-6047, 2009. https://doi.org/10.1073/pnas.0900155106

Y. Yeng, M. Ghebrebrhan, P. Bermel, W.R. Chan, J.D. Joannopoulos, M. Soljačić, I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” PNAS, vol. 109, pp. 2280–2285, 2012. https://doi.org/10.1073/pnas.112014910

M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljacic, J. Joannopoulos1, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A, vol. 83, no. 033810, 2011. https://doi.org/10.1103/PhysRevA.83.033810

J. García-Merino, L. Fernández-Izquierdo, R. Villarroel, S.A. Hevia, “Photo-thermionic emission and photocurrent dynamics in low crystallinity carbon nanotubes,” J. Materiomics, vol. 7, pp. 271-280, 2021. https://doi.org/10.1016/j.jmat.2020.10.002

T. M. Tritt, Thermal conductivity: Theory, properties and applications, New York: Kluwer Academic / Plenum Publishers, 2004.

M. Shiraishi, M. Ata, “Work function of carbon nanotubes,” Carbon, vol. 39, pp. 1913-1917, 2001. https://doi.org/10.1016/S0008-6223(00)00322-5

F. Jin, A. Beaver, “High thermionic emission from barium strontium oxide functionalized carbon nanotubes thin film surface,” Appl. Phys. Lett., vol. 110, no. 213109, 2017. https://doi.org/10.1063/1.4984216

A. Mezzi, E. Bolli, S. Kaciulis, M. Mastellone, M. Girolami, V. Serpente, A. Bellucci, R. Carducci, R. Polini, D.M. Trucchi, “Work function and negative electron affinity of ultrathin barium fluoride films,” Surf. Interface Anal., vol. 52, pp. 968-974, 2020. https://doi.org/10.1002/sia.6832

I. Celanovic, N. Jovanovic, J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett., vol. 92, no. 193101, 2008. https://doi.org/10.1063/1.2927484

T. Gharbi, D. Barchiesi, S. Kessentini, R. Maalej, “Fitting optical properties of metals by Drude-Lorentz and partial-fraction models in the [0.5;6] eV range,” Opt. Mater. Express, vol. 10, pp. 1129-1162, 2020. https://doi.org/10.1364/OME.388060

D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys., vol. 119, no. 085101, 2016. https://doi.org/10.1063/1.4942216

V. Rinnerbauer, S. Ndao, Y. Xiang-Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačićab, I. Celanovicb, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci., vol. 5, pp. 8815-8823, 2012. https://doi.org/10.1039/C2EE22731B

V. Rinnerbauer, Y. Shen, J.D. Joannopoulos, M. Soljačić, F. Schäffler, I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express, vol. 22, pp. A1895-A1906, 2014. https://doi.org/10.1364/OE.22.0A1895

H. Ye, H. Wang, Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectrosc. Radiat. Transfer, vol. 158, pp. 119-126, 2015. https://doi.org/10.1016/j.jqsrt.2015.01.022

E. Rahman, A. Nojeh, “Micro-gap thermo-photo-thermionics: An alternative approach to harvesting thermo-photons and its comparison with thermophotovoltaics,” Appl. Therm. Eng., vol. 224, no. 119993, 2023. https://doi.org/10.1016/j.applthermaleng.2023.119993

A. Datas, R. Vaillon, “Thermionic-enhanced near-field thermophotovoltaics,” Nano Energy, vol. 61, pp. 10-17, 2019. https://doi.org/10.1016/j.nanoen.2019.04.039

Downloads

Published

10-09-2024

How to Cite

Design of selective absorber-emitter based on carbon nanotubes and tungsten for thermo-photovoltaic applications. (2024). Científica, 28(1), 1-10. https://doi.org/10.46842/ipn.cien.v28n1a07