Analysis of the Free Flow Generated by a Two-Blade Axial Fan
DOI:
https://doi.org/10.46842/ipn.cien.v28n1a03Keywords:
axial fan, induced flow, flow contractionAbstract
This paper analyses experimentally the flow generated by a two blades axial fan to determine the position in which the average induced axial velocity is maximum and the radius of the flow contraction (wake) in that position. For this, the radial distribution of the induced axial velocity in different planes parallel to the plane of fan rotation was measured. From the data obtained it was determined that the average maximum induced axial velocity is at a distance equal to 33% of the radius of the fan and the contraction radius at that position is 70.2% of the fan radius. Similarly, it was found that the local induced axial velocity is maximum in the radial limit of the flow contraction generated by the fan and is higher while the plane of rotation is closer.
References
Instituto Politécnico Nacional, “Aparato Propulsor para Vehículos Terrestres y/o Marítimos Basado en el Efecto Magnus”, patente otorgada por el IMPI el 17 de mayo del 2018. Título de patente No. 356351. Inventores: T. Fernández-Roque y J. F. Vázquez-Flores.
Instituto Politécnico Nacional, “Equipo de Laboratorio para Medir la Fuerza de Empuje Generada por el Efecto Magnus”, patente otorgada por el IMPI el 15 de febrero del 2021. Título de patente No. 380046. Inventores: T. Fernández-Roque y J. F. Vázquez-Flores.
R. G. Lomas Rodríguez, “Diseño y Construcción de un Equipo de Laboratorio Didáctico para Medir la Fuerza de Empuje Generada por el Efecto Magnus”, tesis de licenciatura, ingeniería aeronáutica, Instituto Politécnico Nacional, Ciudad de México, México, 2016.
G. A. M. van Kuik, J. N. Sørensen, V. L. Okulov, “Rotor theories by Professor Joukowsky: Momentum theories”, Progress in Aerospace Sciences, vol. 73, pp. 1-18, 2015. doi: https://doi.org/10.1016/j.paerosci.2014.10.001
“Froude’s momentum theory of propulsion”, Helicopters & Aircraft, http://heli-air.net/2016/02/28/froude-s-momentum-theory-of-propulsion/ (consultada el 30 de mayo del 2023).
A. Gessow, “Review of Information on Induced Flow of a Lifting Rotor”, NACA TN 3238, August 1954. Available: https://ntrs.nasa.gov/api/citations/19930083909/downloads/19930083909.pdf
J. W. McKee, R. L. Naeseth, “Experimental Investigation of the Drag of Flat Plates and Cylinders in the Slipstream of a Hovering Rotor”, NACA TN 4239, April 1958. Available https://ntrs.nasa.gov/api/citations/19930085197/downloads/19930085197.pdf
D. M. Etter, Solución de Problemas de Ingeniería con MatLab, 2ª. Ed. Prentice Hall, 1998.
M. Hall, T. T. Yeh, “Airspeed calibration service”, National Institute of Standards and Technology, Gaithersburg, MD, 2007. doi: https://doi.org/10.6028/NIST.SP.250-79
O. Ruont, M. Vilbaste, Report of the Air velocity interlaboratory comparison measurement between Jormita OY and Testing Centre, University of Tartu, 2013, Littoinen, Finland, Tartu, Estonia. Available: http://www.katsekoda.ut.ee/sites/default/files/katsekoda1/files/interlaboratory_comparison_report_jormita_tcut_130613.pdf
T. B. Beck, D. M. Bardot, M. H. Hosni, “Uncertainty Analysis of the Experimental Results Investigating the Effects of Turbulence Intensity on the Performance of Rotating Vane Anemometers”, Conference Proceeding by ASHRAE, 2002, technical papers 4593 (RP-986).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Instituto Politecnico Nacional
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.