Detection system of congestive heart failure in ECG signals through machine learnin
DOI:
https://doi.org/10.46842/ipn.cien.v28n2a06Keywords:
Classification, Electrocardiogram, Signal analysis, Machine learning, Web platformAbstract
Cardiovascular diseases, such as Congestive Heart Failure (CHF), are leading causes of global mortality and deteriorate quality of life. The Electrocardiogram (ECG), efficient and non-invasive, is essential for detecting CHF by analyzing the heart's electrical activity. This work integrates supervised machine learning into ECG analysis, using classification models to distinguish between normal signals and those affected by CHF. A web platform is developed to support research and the development of Telemedicine systems, facilitating the automated classification of ECG signals and contributing to remote medical diagnosis, data recording, and medical consultations. The present study demonstrates that the models used achieve up to 99% accuracy, with only 5 errors in 720 test samples. However, the system’s generalization may be limited by signal variability and acquisition conditions. The main contribution of this work is the investigation of specific ECG features to train classification models, providing a foundation for future research in clinical environments.
References
L. Azcona, “El electrocardiograma,” in Libro de la salud cardiovascular, A. López Farré, C. Mayaca Miguel, 1ª ed. Bilbao, España: Narea, 2009, pp. 49-56.
A. Darmawahyuni, S. Nurmaini, M. Yuwandini, M. N. Rachmatullah, F. Firdaus, B. Tutuko, “Congestive heart failure waveform classification based on short time-step analysis with recurrent network,” Informatics in Medicine Unlocked, vol. 21, p. 100441, 2020, doi: https://doi.org/10.1016/j.imu.2020.100441.
D. Li, Y. Tao, J. Zhao, H. Wu, “Classification of Congestive Heart Failure from ECG Segments with a Multi-Scale Residual Network,” Symmetry, vol. 12, no. 12, p. 2019, Dec. 2020, doi: 10.3390/sym12122019. Disponible en: https://doi.org/10.3390/sym12122019.
V. Jahmunah, S. L. Oh, J. K. E. Wei, E. J. Ciaccio, K. Chua, T. R. San, U. R. Acharya, ``Computer-aided diagnosis of congestive heart failure using ECG signals – A review,'' Physica Medica, vol. 62, pp. 95-104, jun. 2019, ISSN 1120-1797. DOI: 10.1016/j.ejmp.2019.05.004. [En línea]. Available: https://www.sciencedirect.com/science/article/pii/S1120179719301115.
L. Hussain, I. A. Awan, W. Aziz, S. Saeed, A. Ali, F. Zeeshan, K. S. Kwak, ``Detecting Congestive Heart Failure by Extracting Multimodal Features and Employing Machine Learning Techniques,'' BioMed Research International, vol. 2020, ID 4281243, Feb. 2020. DOI: 10.1155/2020/4281243. [En línea]. Disponible en: https://www.hindawi.com/journals/bmri/2020/4281243/.
A. C. Guyton, J. E. Hall, “Electrocardiograma normal,” in Tratado de fisiología médica, 12ª ed., vol. 1, Unidad 3, Elsevier, 2011, pp. 121-130.
R. Bover, “El electrocardiograma (ECG) en la insuficiencia cardíaca: bloqueo de rama izquierda,” Insuficiencia cardíaca para pacientes, Aug. 13, 2018. Available: https://insuficiencia-cardiaca.com/insuficiencia-cardiaca/diagnostico-insuficiencia-cardiaca/41-diagnostico-electrocardiograma-insuficiencia-cardiaca.html.
D. Zipes, P. Libby, R. Bonow, D. Mann, and G. Tomaselli, Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 11ª ed. Philadelphia, PA, USA: Elsevier, 2019.
D. S. Baim, W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J. Ransil, W. Grossman, E. Braunwald, “Survival of patients with severe congestive heart failure treated with oral milrinone,” Journal of the American College of Cardiology, vol. 7, no. 3, pp. 661-670, Mar. 1986, doi: https://doi.org/10.1016/s0735-1097(86)80478-8.
A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215-e220, Jun. 2000, doi: https://doi.org/10.13026/C29G60.
A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215-e220, Jun. 2000. Available: https://physionet.org/content/nsrdb/1.0.0/.
O. Manolkar, N. Gawande, “ECG Analysis for Chronic Heart Failure Detection using Deep Learning,” International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 11, no. 6, 2023, doi: https://doi.org/10.22214/ijraset.2023.53733.
V. Morales Oñate, “Machine Learning: Teoría y Práctica,” [En línea]. Disponible: https://bookdown.org/victor_morales/TecnicasML/. (accesed Apr. 11, 2023).
J. Botros, F. Mourad-Chehade, D. Laplanche, “CNN and SVM-Based Models for the Detection of Heart Failure Using Electrocardiogram Signals,” Sensors (Basel), vol. 22, no. 23, p. 9190, Nov. 2022, doi: https://doi.org/10.3390/s22239190.
A. Turnip et al., “Classification of ECG signal with Support Vector Machine Method for Arrhythmia Detection,” J. Phys.: Conf. Ser., vol. 970, p. 012012, Jul. 2018, doi: https://doi.org/10.1088/1742-6596/970/1/012012.
I. Logunova, “K-Nearest Neighbors Algorithm for ML,” Serokell. Available: https://serokell.io/blog/knn-algorithm-in-ml. (accesed Sep. 7, 2024).
Y. Shi, Z. Yang, K. Yang, Y. Zhou, “k-Nearest Neighbors Method,” in Mobile Edge Artificial Intelligence, Academic Press, 2022. Available: https://doi.org/10.1016/C2020-0-00624-9.
ScienceDirect, “k-Nearest Neighbors Algorithm,” ScienceDirect. Available: https://www.sciencedirect.com/topics/computer-science/k-nearest-neighbors-algorithm. (accesed Sep. 7, 2024).
S. Jayalalitha, D. Susan, S. Kumari, B. Archana, "K-nearest Neighbour Method of Analysing the ECG Signal (To Find out the Different Disorders Related to Heart)," Journal of Applied Sciences, vol. 14, no. 14, pp. 1628-1632, 2014, doi: https://doi.org/10.3923/jas.2014.1628.1632.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed. Cambridge, MA, USA: MIT Press, 2016.
U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, C. K. Chua, "Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network," Knowledge-Based Systems, vol. 132, pp. 62-71, Jun. 2017, doi: https://doi.org/10.1016/j.knosys.2017.06.003.
Y. Karaca, M. Moonis, "Shannon entropy-based complexity quantification of nonlinear stochastic process," in Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems, Elsevier, 2022. Available: https://www.sciencedirect.com/topics/engineering/shannon-entropy.
T. Li, M. Zhou, "ECG classification using wavelet packet entropy and random forests," Entropy, vol. 18, no. 8, p. 285, Aug. 2016. https://doi.org/10.3390/e18080285.
H. Yanık, E. Değirmenci, B. Büyükakıllı, D. Karpuz, O. Kılınç, S. Gürgül, "Electrocardiography (ECG) analysis and a new feature extraction method using wavelet transform with scalogram analysis," Biomedical Engineering / Biomedizinische Technik, vol. 65, no. 5, pp. 543-556, May 2020. https://doi.org/10.1515/bmt-2019-0147.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Aldair Ascencio Salazar, Ángel Humberto Corral Domínguez, Fortunato Ramírez Arzate, José Ricardo Cárdenas Valdez (Autor/a)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.