Fractal Dynamics of Children with Learning Disorders in Mexico

Authors

  • Ixchel Lina-Reyes Instituto Politecnico Nacional Author
  • Oswaldo Morales-Matamoros Instituto Politecnico Nacional Author
  • Jesús Jaime Moreno-Escobar Instituto Politecnico Nacional Author
  • Teresa Ivonne Contreras-Troya Universidad Autonoma del Estado de Mexico Author

DOI:

https://doi.org/10.46842/ipn.cien.v23n1a04

Keywords:

reading, EEG, fluctuations, self-affinity, dynamic scaling, power laws, correlations, rough interfaces

Abstract

This work characterizes the dynamics of time series fluctuations of children with learning disorders in Mexico, specifically with reading problems, by applying fractal geometry and roughness interface growth theory. From the EEG of children diagnosed were built time series of standard deviation v(t, τ) for each of the 19 channels distributed in different regions of the cerebral cortex. The self-affinity of the time series v(t, τ) (treated as interfaces in motion) is characterized by the scaling behavior of the structure functions by one hand σ (δt)ζ, with ζ as the local exponent, and the other hand σ (τ)β, with β as the fluctuation growth exponent. It was found that the behavior of children with reading problems is similar to the Family-Vicsek scaling dynamic for a kinetic roughening of moving interface. Therefore it would possible to characterize and model the studied time series v(t, τ) by using the tools from the theory of kinetic roughening.

References

B. B. Mandelbrot, The Fractal Geometry of Nature. 2 a edición. Nueva York: W.H. Freeman, 1982.

B. B. Mandelbrot, Fractals. Nueva York: W.H. Freeman, 1977.

H. E. Stanley, "Fractal landscapes in physics and biology," Physica A, vol. 86, no. 1-2, pp.1-32. Julio 1992. [en línea]. Disponible en: https://www.sciencedirect.com/science/article/pii/037843719290362T

H. Kantz H., T. Schreiber, Nonlinear Time Series Analysis. 1a ed. Cambridge: Cambridge University Press. 1997.

C. K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A.L. Goldberger, "Mosaic organization of DNA nucleotides," Physical Review E, vol. 49, no. 2, pp.1685-1689. Febrero 1994. [en línea]. Disponible en: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.49.1685

A. Bunde, S. Havlin, J. W. Kantelhardt, T. Penzel, J. H. Peter, K. Voigt, "Correlated and uncorrelated regions in heart-rate fluctuations during sleep," Physical Review Letters, vol. 85, no. 17, pp. 3736-3739. Octubre 2000. [en línea]. Disponible en: https://pdfs.semanticscholar.org/612e/f7a9772e7ef506591c85ff0af5ae8440c5e9.pdf

A. L. Barabási, H. E. Stanley, Fractal Concepts in Surface Growth. 1a ed. Reino Unido: Cambridge University Press. 1995.

S. Szava, P. A. Valdés-Sosa, R. J. Biscay, L. G. García, "High resolution quantitative EEG analysis," Brain Topography, vol. 6, no.3, pp. 211-219. Marzo 1994. [en línea] Disponible en: https://link.springer.com/article/10.1007/BF01187711

M. Constantin, S. Das-Sarma, "Volatility, persistence, and survival in financial markets," Physical Review E, vol. 72, no. 5, pp. 051-106. Noviembre 2005. [en línea]. Disponible en: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.72.051106

A. Balankin, O. Morales, "Crossover from antipersistent to persistent behavior in time series possessing the generalized dynamic scaling law," Physical Review E, vol. 69, no. 3, pp.065-106. Marzo 2004. [en línea]. Disponible en: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.036121

A. Balankin, O. Morales, M. E.Gálvez, A. Pérez, "Devil’s-staircase-like behavior of the range of random time series with record-breaking fluctuations," Physical Review E, vol. 71, no. 3, pp. 065106-1 065106-4. Junio 2005. [en línea]. Disponible en: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.065106

A. Balankin, R. García, O. Susarrey, F. Castrejon, "Kinetic Roughening and Pinning of Two Coupled Interfaces in Disordered Media," Physical Review Letter, vol. 96, no. 5, pp.101-104. Febrero 2006. [en línea]. Disponible en: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.056101

J. J. Ramasco, J. M. López, M. A. Rodríguez, "Superroughening versus intrinsic anomalous scaling of surfaces," Physical Review Letters, vol. 56, no. 4, pp. 3993-3998. Octubre 1997. [en línea]. Disponible en: https://link.aps.org/doi/10.1103/PhysRevE.56.3993

A. Balankin, "Dynamic scaling approach to study time series fluctuations," Physical Review E, vol. 76, no. 5, pp. 056-120. Noviembre 2007. [en línea]. Disponible en: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.056120

P. Meakin, Fractals, Scaling and Growth Far from Equilibrium. 1a ed. New York: Cambridge University Press, 1998.

Downloads

Published

10-09-2024

How to Cite

Fractal Dynamics of Children with Learning Disorders in Mexico. (2024). Científica, 23(1), 31-41. https://doi.org/10.46842/ipn.cien.v23n1a04