An application of an evolutionary algorithm in the study of a boiling water reactor fuel lattices with minor actinides
DOI:
https://doi.org/10.46842/ipn.cien.v29n1a06Keywords:
Minor actinides, fuel lattice, CASMO4Abstract
In this work, a method for carrying out the neutronic design of a boiling water reactor fuel lattices is shown. Generated designs include a vector of minor actinides that were added to a pin in a typical 10x10 fuel assembly. This vector is composed of neptunium, americium and curium concentrations. The decision variables used in this design process were: average enrichment of U-235 (w/o), concentration of tri-oxide of gadolinium (w/o), neutronic multiplication factor in an infinite medium (k-infinity), and local power peaking factor of the fuel lattice. In addition to, a fixed average void fraction (%), not presence of control rod is taken into account, and temperature of the fuel among other boundary conditions. Regarding to restrictions on decision variables, these include that k-infinity must be into the interval of ±100 pcm with respect to reference value; the average enrichment of fuel lattice must be under the reference fuel enrichment but less than 1.0% with respect to the reference. A similar restriction is also assumed for the neutronic burnable poison concentration; local power peaking factor must not be greater than assumed reference. CASMO4 code was used for making the simulation of fuel lattices throughout the designing process. Obtained fuel lattices fulfilled each and every one of the restrictions imposed to them to be considered acceptable solutions.
References
International Atomic Energy Agency, Advances in Applications of Burnup Credit to Enhance Spent Fuel Transportation, Storage, Reprocessing and Disposition, IAEA-TECDOC-1547, Vienna, Austria, 2005.
International Atomic Energy Agency, Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel, IAEA-TECDOC-1626, Vienna, Austria, 2009.
International Atomic Energy Agency, Status of Minor Actinide Fuel Development, IAEA No. NF-T-4.6, Vienna, 2009.
D. Westlén, “Why Faster is Better - On Minor Actinide Transmutation in Hard Neutron Spectra,” Ph.D. thesis, School of Engineering Sciences, Physics, KTH engineering science, Stockholm, Sweden, 2007. Available: http://kth.diva-portal.org/smash/get/diva2:11605/FULLTEXT01.pdf
J. L. Francois, C. Martín-del-Campo, R. Francois, L. B. Morales, “A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function”, Annals of Nuclear Energy, vol. 30, no. 12, pp. 1213-1229, August 2003, doi: https://doi.org/10.1016/S0306-4549(03)00055-0
J.-L. Montes-Tadeo, R. Perusquía-del-Cueto, D. A. Pelta, J.-L. François, J.-J. Ortiz-Servin, C. Martín-del-Campo, A. Castillo, “A hybrid system for optimizing enrichment and gadolinia distributions in BWR fuel lattices”, Progress in Nuclear Energy, vol. 119, pp. 103-172, January 2020, doi: https://doi.org/10.1016/j.pnucene.2019.103172
C., Martin-del-Campo, J. L., Francois, R., Carmona., I. P. Oropeza., “Optimization of BWR fuel lattice enrichment and gadolinia distribution using genetic algorithms and knowledge”, Annals of Nuclear Energy, vol. 34, no. 4, pp. 248-253, April 2007, doi: https://doi.org/10.1016/j.anucene.2006.12.008
W. F. Sacco, N. Henderson, A.C. Rios-Coelho, M. M. Ali, C. Pereira, “Differential evolution algorithms applied to nuclear reactor core design”, Annals of Nuclear Energy, vol. 36, no. 8, pp. 1093-1099, 2009, https://doi.org/10.1016/j.anucene.2009.05.007
E. Zio, G. Viadana, “Optimization of the inspection intervals of a safety system in a nuclear power plant by Multi-Objective Differential Evolution (MODE)”, Reliability Engineering & System Safety, vol. 96, no. 11, pp. 1552-1563, 2011, https://doi.org/10.1016/j.ress.2011.06.010
T. Hielscher, S. A. Hadigheh, “Optimizing Memory-Efficient Multimodal Networks for Image Classification using Differential Evolution”, Applied Soft Computing, vol. 171, 2025, doi: https://doi.org/10.1016/j.asoc.2025.112714
R. Zhong, A. G. Hussien, S. Zhang, Y. Xu, J. Yu, “Space mission trajectory optimization via competitive differential evolution with independent success history adaptation”, Applied Soft Computing, vol. 171, 2025, https://doi.org/10.1016/j.asoc.2025.112777
E. Martínez Caballero, “Análisis de la reducción de radiotoxicidad basado en el reciclado de actínidos”, tesis de doctorado, física y matemáticas, Instituto Politécnico Nacional, Ciudad de México, México, 2015.
E. Martinez, J. R. Ramirez, G. Alonso, “Actinides recycling assessment in a thermal reactor”, Annals of Nuclear Energy, vol. 79, pp. 51-60, May 2015, doi: http://dx.doi.org/10.1016/j.anucene.2015.01.014
J. R. Ramirez, G. Alonso, E. Martinez, R. Castillo, J. C. Palacios, “Analysis of actinide recycling in a Boiling Water Reactor using CASMO-4/SIMULATE-3”, Progress in Nuclear Energy, vol. 89, pp. 26-38, May 2016, doi: http://dx.doi.org/10.1016/j.pnucene.2016.02.003
E. Martínez C., J. L. Montes-Tadeo, “Estudio del Contenido de Actínidos Menores en Celdas de Combustible BWR”, 34 Congreso Anual de la Sociedad Nuclear Mexicana. Reactores Modulares Pequeños, una nueva perspectiva para la Energía Nuclear en México, La Paz, Baja California Sur, México, agosto, 2023.
Storn, R., Price, K., “Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces”, Journal of Global Optimization, vol. 11, no.4, pp.341-359, December 1997, doi: https://doi.org/10.1023/A:1008202821328
I. C. Gauld, O. W. Hermann, R. M. Westfall, ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms, Nuclear Sci. & Tech. Div., ORNL/TM-2005/39, ver. 6, vol. II, Sect. F7, Oak Ridge National Laboratory, USA, January, 2009.
L. M. Petrie, N. F. Landers, D. F. Hollenbach, B. T. Rearden, M. E. Dunn, S. Goluoglu, KENO V.a: An Improved Monte Carlo Criticality Program, Nuclear Sci. & Tech. Div., ORNL/TM-2005/39, ver. 6, vol. II, Sect. F11, Oak Ridge National Laboratory, USA, January 2009.
Nuclear Energy Agency, Actinide and fission product partitioning and transmutation, Tenth Information Exchange Meeting, ISBN 978-92-64-99097-5, Organisation for Economic Co-operation and Development, Mito, Japan, 2008.
J. Rhodes, M. Edenius, CASMO-4. A Fuel Assembly Burnup Program. User’s Manual. SSP-01/400 Rev 4. StudsvikScandpower, 2004.
J. L. Montes, J. L. François, J. J. Ortiz, C. Martín-del-Campo, R. Perusquía, “Fuel lattice design in a boiling water reactor using an ant-colony-based system”, Annals of Nuclear Energy, vol. 38, no. 6, pp. 1327-1338, ISSN 0306-4549, 2011, doi: https://doi.org/10.1016/j.anucene.2011.02.001
D. Goldberg, Genetic Algorithms in Search, Optimization and Learning Machine, MA, USA: Addison-Wesley, 1989.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dr. Eduardo Martínez Caballero, Dr. José Luis Montes Tadeo, Dr. José Ramón Ramírez Sánchez (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.