Analizing effects on fabrication pressure of single wall carbon nanotube (SWNT) pellets as possible thermoluminiscent gamma radiation detector
DOI:
https://doi.org/10.46842/ipn.cien.v29n1a10Keywords:
single wall carbon nanotube pellets, thermoluminescence, scanning electron microscopy, pellet preparation pressure, X-ray diffraction, Raman spectroscopy, radiation gamma detectorAbstract
Single wall carbon nanotube (SWNT) pellets have been manufactured at pressures of 1, 2.5 and 5 Tons, and later exposed to gamma photons from a Co60 source to study their thermoluminiscent (TL) properties. SWNT were synthesized by the electric arc discharge technique and pellets were characterized with Raman spectroscopy and X-ray diffraction (XRD). The effective atomic number (Zeff) of these pellets has a value of 15.08 like the one of human bones. The pellets were exposed to a dose ranging from 1.0 kGy to 0.1 MGy. Glow curves of the samples exhibit complex structure which was deconvoluted by a Computerized Glow Curve Deconvolution (CGCD) and heuristic equations (Chen, Lushchik, etc.) were made to obtain kinetic parameters. Recombination is the process responsible of the thermoluminescent signal. The main glow peak is observed at 452, 465 and 477 K, in samples A, B and C, respectively. As preparation pressure pellets increases, activation energy decreases for all traps in the samples, indicating the creation of defects in the SWNT structure. In SWNT-pellets one of the most important mechanisms responsible of the TL signal is the recombination of electron–hole pairs. A threshold dose of 1 kGy was necessary to generate defects responsible of TL signal. Three stages are displayed in the TL dose-response for all samples, and linearity was maintained up to 2.5 kGy. Thermoluminescence, X-RD and Raman scattering, analyses show that pellet A is a promising high radiation detector.
References
A. Ortiz-Morales, M. García Hipólito, E. Cruz Zaragoza, R. Gómez Aguilar, “Characterization and thermoluminescence study of gamma irradiated Tb-doped ZnO and undoped ZnO synthesized by spray pyrolysis method”, Nova scientia, vol. 13, no. 27, pp. 1-25, 2021. https://doi.org/10.21640/ns.v13i27.2877
A. Ortiz-Morales, J. Ortiz-Lopez, E. Cruz-Zaragoza, R. Gómez-Aguilar, “Thermoluminescence and photoluminescence analyses of MEH-PPV, MDMO-PPV and RU(bpy) 3 gamma-irradiated polymer thin films”, Applied Radiation and Isotopes, no. 102, pp. 55–62, 2015. https://doi.org/10.1016/j.apradiso.2015.04.013
A. Ortiz-Morales, R. Gómez-Aguilar, J. Ortiz-Lopez, E. Cruz-Zaragoza, “Characterizing the Dosimetric Properties of MEH-PPV Using Thermoluminescence (TL)”, MRS Proceedings, vol. 1613, pp. 127-131, 2014. https://doi.org/10.1557/opl.2014.169
A. Ortiz-Morales, J. Ortiz-López, B. Leal-Acevedo, R. Gómez-Aguilar, “Thermoluminescence of single wall carbon nanotubes synthesized by hydrogen-arc-discharge method”, Applied Radiation and Isotopes, vol. 145, pp. 32-38, 2019. https://doi.org/10.1016/j.apradiso.2018.11.001
L. Aparecida Forner, C. Viccari, P. Nicolucci, “Dosimetric properties of thermoluminescent pellets of CaSO4 doped with rare earths at low doses”, Radiation Physics and Chemistry, vol. 171, 2020. https://doi.org/10.1016/j.radphyschem.2020.108704
V. K. Mathur, A. C. Lewandowski, N. A. Guardala, J. L. Price. “High dose measurements using thermoluminescence of CaSO4:Dy”, Radiation Measurements vol. 30 no. 6, pp. 735-738, 1999. https://doi.org/10.1016/S1350-4487(99)00244-9
M. A. Tarawneha, S. A. Saraireha, R. Shan Chenb, S. Hj Ahmad, M. A. Al-Tarawni, L. Jiun Yu, “Gamma irradiation influence on mechanical, thermal and conductivity properties of hybrid carbon nanotubes/montmorillonite nanocomposites”, Radiation Physics and Chemistry, vol. 179, 2021. https://doi.org/10.1016/j.radphyschem.2020.109168
J. Sobczak, A. Truszkiewicz, K. Cwynar, S. Ruczka, A. Kolanowska,R. G. Jedrysiak, S. Waskiewicz, M. Dzida, S. Boncel, G. Zyła “Soft, ternary, X- and gamma-ray shielding materials: paraffin-based iron-encapsulated carbon nanotube nanocomposites”, Mater. Adv., no. 18, 2024. https://doi.org/10.1039/d4ma00359d
M. G. Albarrán Sánchez, E. Mendoza Villavicencio, E. Cruz Zaragoza, “Dosimetría Química de irradiadores gamma de 60Co y 137Cs de uso semi-industrial e investigación”, Nova Scientia, vol. 9 no. 19, pp. 113, 2017. https://doi.org/10.21640/ns.v9i19.943
J. Sippel-Oakley, H. T. Wang, B.S. Kang, Z. Wu, F. Ren, A.G. Rinzler, S.J. Pearton, “Carbon nanotube films for room temperature hydrogen sensing”, Nanotechnology, vol. 16 no. 10, pp. 2218–2221, 2005. https://doi.org/10.1088/0957-4484/16/10/040
X. W. Tang, Y. Yang, W. Kim, Q. Wang, P. Qi, H. Dai, L. Xing, “Measurement of ionizing radiation using carbon nanotube field effect transistor”, Physics in Medicine and Biology, vol. 50 no. 3, pp. N23–N31. https://doi.org/10.1088/0031-9155/50/3/N02
V.N. Khabashesku, W. E. Billups, J. L. Margrave, “Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions”, Accounts of Chemical Research, vol. 35 no. 12, pp. 1087–1095, 2002. https://doi.org/10.1021/ar020146y
S. M. Bachilo, M.S. Strano, C. Kittrell, R. H. Hauge, R.E. Smalley, R.B. Weisman, “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes”, Science, vol. 298, pp. 2361–2366, 2002. https://doi.org/10.1126/science.1078727
M. X. Pulikkathara, M. L. Shofner, R. T. Wilkins, J. G Vera, E. V. Barrera, F. J. Rodríguez-Macías, R.K Vaidyanathan, C. E. Green, C. G. Condon, “Fluorinated Single Wall Nanotube/Polyethylene Composites for Multifunctional Radiation Protection”, MRS Proceedings, vol. 740, 2002. https://doi.org/10.1557/PROC-740-I11.6
B. Khare, M. Meyyappan, M. Moore, P. Wilhite, H. Imanaka, B. Chen, “Proton Irradiation of Carbon Nanotubes”, Nano Letters, vol. 3 no. 5, pp. 643–646, 2003. https://doi.org/10.1021/nl034058y
T. S. Gspann, N. H. H. Ngern, A. Fowler, A. H. Windle, V.B.C. Tan, J. A. Elliott, “Triboluminescence flashes from high-speed ruptures in carbon nanotube Macro-Yarns”, Materials Letters, vol. 213, pp. 298–302, 2018. https://doi.org/10.1016/j.matlet.2017.11.066
S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R.B. Weisman “Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes”, Science, vol. 298 no. 5602, pp. 2361–2366, 2002. https://doi.org/10.1126/science.1078727
V. Cruz‐Alvarez, J. Ortiz‐López, C. Mejía‐García, J.S. Arellano‐Peraza, V.M. Sánchez‐Martínez, J. Chávez‐Carvayar, “Anisotropies in Carbon Nanotube Synthesis by the Hydrogen Arc Plasma Jet Method”, Fullerenes, Nanotubes and Carbon Nanostructures, vol. 13 no. 4, pp. 299–311, 2005. https://doi.org/10.1080/15363830500237143
T. M. Keller, S. B. Qadri, C. A. Little, “Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions”, J. Mater. Chem., vol. 14, pp. 3063-3070, 2004.
T. Shimada, T. Sugai, C. Fantini, M. Souza, L. G. Cançado, A. Jorio, M.A. Pimenta, R. Saito, A. Grüneis, G. Dresselhaus, M.S. Dresselhaus, Y. Ohno, T. Mizutani, H. Shinohara, “Origin of the 2450cm−1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes”, Carbon, vol. 43 no. 5, pp. 1049–1054, 2005. https://doi.org/10.1016/j.carbon.2004.11.044
V. Skákalová, “Effect of Gamma-Irradiation on Single-Wall Carbon Nanotube Paper”, AIP Conference Proceedings, vol. 685, pp. 143–147, 2003. https://doi.org/10.1063/1.1628005
E. Cruz-Zaragoza, B. Ruiz-Gurrola, C. Wacher, T. Flores-Espinoza, M. Barboza-Flores, “Gamma radiation effects in coriander (Coriandrum sativum L) for consumption in Mexico”, Rev. Mex. Fís., vol. 57, pp. 80-86, 2011.
G. Kitis, J. M. Gomez-Ros, J. W. N. Tuyn, “Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics”, Journal of Physics D: Applied Physics, vol. 31, 1998. http://doi/10.1088/0022-3727/31/19/037
H. G. Balian, N. W. Eddy, “Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks” Nuclear Instruments and Methods, vol. 145 no. 2, pp. 389–395, 1977. https://doi.org/10.1016/0029-554X(77)90437-2
C. Sunta, W.E. Ayta, J.F. Chubaci, S. Watanabe, “General order and mixed order fits of thermoluminescence glow curves—a comparison”, Radiation Measurements, vol. 35 no. 1, pp. 47–57, 2002. https://doi.org/10.1016/S1350-4487(01)00257-8
G. Kitis, V. Pagonis, S. E. Tzamarias, “The influence of competition effects on the initial rise method during thermal stimulation of luminescence: A simulation study”, Radiation Measurements, vol. 100, pp. 27–36, 2017. https://doi.org/10.1016/j.radmeas.2017.03.047
H. A. Borbón-Nuñez, C. Furetta, “Activation Energy of Modified Peak Shape Equations”, World Journal of Nuclear Science and Technology, vol. 7 no. 4, pp. 274–283, 2017. https://doi.org/10.4236/wjnst.2017.74021
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dr. Alejandro Ortiz Morales, Dr. Ramón Gómez Aguilar, Dr. Benjamín Leal Acevedo, Dr. Jaime Ortiz López (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.