A Review of Multimodal Artificial Intelligence: Ethical Challenges and Practical Benefits in Content Generation

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v29n2a08

Keywords:

Multimodal AI, AI-generated content, Ethical challenges, Automation Efficiency

Abstract

This systematic review examines 23 peer‑reviewed studies published since 2020 to delineate the principal technical and ethical risks, synthesize key benefits, and identify future research avenues for AI‑driven multimodal content creation. Employing a PRISMA‑guided protocol, we screened five major digital libraries and applied rigorous inclusion/exclusion criteria alongside an adapted CASP checklist, yielding a final corpus that spans visual art, education, marketing, healthcare, disaster response, architectural design, communication, and sports entertainment. We classified these works into four functional categories, Creation and Design, Communication and Analysis, Automation and Detection, and Interaction and Teaching, and quantified their emphases: 30 % of studies prioritized automation efficiency, 26 % highlighted personalized outputs, and 18 % reported enhanced content diversity. Crucially, our review also catalogs significant risks, misinformation, modality‑alignment failures, algorithmic bias, and privacy breaches, underscoring the need for transparent algorithms, bias‑monitoring protocols, and privacy‑by‑design frameworks. We conclude by advocating the development of interpretable models, standardized ethical data‑handling methodologies, and real‑time mitigation tools, as well as interdisciplinary collaborations to advance robust, responsible, and scalable multimodal AI systems.

References

[1] G. Joshi, R. Walambe, K. Kotecha, “A Review on Explainability in Multimodal Deep Neural Nets,” IEEE Access, vol. 9, pp. 59800–59821, 2021, doi: 10.1109/ACCESS.2021.3070212

[2] M. Chen, et al., “Replanteamiento de la moderación de contenido multimodal desde un ángulo asimétrico con modalidad mixta,” ArXiv, vol. abs/2305.10547, 2023, doi: 10.48550/arXiv.2305.10547

[3] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, 2021.

[4] CASP, “CASP Qualitative Checklist: 10 questions to help you make sense of qualitative research (Version 6).” 2018.

[5] D. P. Serrano, J. P. M. Belda, P. M. Ramallal, “Impacto y oportunidades de la inteligencia artificial en el arte visual: personalización de la creatividad con Stable Diffusion y Controlnet,” in Manipulación en imágenes visuales y sonoras en ficción y no ficción, Dykinson, 2023, pp. 894–909.

[6] D. Palenzuela López, Herramientas de IA generativa para crear puentes literarios: exploración visual con La Casa de Bernarda Alba, 2024.

[7] F. Guerrero-Solé, C. Ballester, “El impacto de la Inteligencia Artificial Generativa en la disciplina de la comunicación,” Hipertext.net, no. 26, pp. 1–9, 2023.

[8] J. L. Martín Prada, et al., La creación artística visual frente a los retos de la inteligencia artificial. Automatización creativa y cuestionamientos éticos, 2024.

[9] O. Cordón García, “Inteligencia Artificial en Educación Superior: Oportunidades y Riesgos,” Revista Interuniversitaria de Investigación en Tecnología Educativa, pp. 16-27, Dec. 2023, doi: 10.6018/riite.591581

[10] M. H. Sarkhoosh, S. Gautam, C. Midoglu, S. Sabet, P. Halvorsen, “Multimodal AI-Based Summarization and Storytelling for Soccer on Social Media,” in Proceedings of the 15th ACM Multimedia Systems Conference, 2024, pp. 485–491.

[11] V. Liu, “Beyond text-to-image: Multimodal prompts to explore generative AI,” in Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 2023, pp. 1–6.

[12] M. R. Morris, J. R. Brubaker, “Generative ghosts: Anticipating benefits and risks of AI afterlives,” arXiv preprint arXiv: 2402.01662, 2024.

[13] A. De Bruyn, V. Viswanathan, Y. S. Beh, J. K.-U. Brock, F. Von Wangenheim, “Artificial intelligence and marketing: Pitfalls and opportunities,” Journal of Interactive Marketing, vol. 51, no. 1, pp. 91–105, 2020.

[14] Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” International Journal of Information Management, vol. 57, p. 101994, 2021.

[15] A. Fitriawijaya, T. Jeng, “Integrating multimodal generative ai and blockchain for enhancing generative design in the early phase of architectural design process,” Buildings, vol. 14, no. 8, p. 2533, 2024.

[16] Y. Zhou, H. J. Park, “Una aplicación multimodal aumentada con IA para esbozar diseños conceptuales,” International Journal of Architectural Computing, vol. 21, pp. 565–580, 2023, doi: 10.1177/14780771221147605

[17] C. G. Cabay Calderon, “Integración de la Inteligencia Artificial con otras tecnologías en la creación decontenidos para redes sociales,” B.S. thesis, Universidad Tècnica de Ambato, Facultad de Jurisprudencia y Ciencias 2023.

[18] M. Jin, et al., “Enfoque multimodal para analizar grandes datos de redes sociales y medios de comunicación,” Discourse, Context and Media, vol. 40, p. 100467, 2021, doi: 10.1016/J.DCM.2021.100467

[19] Y. Lu, et al., “Ética e IA: una revisión sistemática sobre preocupaciones éticas y estrategias relacionadas para el diseño con IA en el ámbito sanitario,” AI, 2022, doi: 10.3390/ai4010003

[20] L. Sun, et al., “Una encuesta exhaustiva sobre el contenido generado por IA (AIGC): una historia de la IA generativa desde GAN hasta ChatGPT,” ArXiv, vol. abs/2303.04226, 2023, doi: 10.48550/arXiv.2303.04226.

[21] S. Dadgar, M. Neshat, “A novel hybrid multi-modal deep learning for detecting hashtag incongruity on social media,” Sensors, vol. 22, no. 24, p. 9870, 2022.

[22] J. Dana, V. Agnus, F. Ouhmich, B. Gallix, “Multimodality imaging and artificial intelligence for tumor characterization: current status and future perspective,” in Seminars in Nuclear Medicine, Elsevier, 2020, pp. 541–548.

[23] M. Imran, F. Ofli, D. Caragea, A. Torralba, “Using AI and Social Media Multimodal Content for Disaster Response and Management: Opportunities, Challenges, and Future Directions,” Information Processing & Management, vol. 57, no. 5, p. 102261, Sep. 2020, doi: 10.1016/j.ipm.2020.102261

[24] B. Jaltotage, J. Lu, G. Dwivedi, “Use of Artificial Intelligence Including Multimodal Systems to Improve the Management of Cardiovascular Disease,” Canadian Journal of Cardiology, 2024.

[25] M. Tong, et al., “Detección de anomalías mediante aprendizaje profundo multimodal,” vol. 12941, pp. 129414V-129414V–7, 2023, doi: 10.1117/12.3011769

[26] I. Jebadurai, A. M. Vedamanickam, P. U. Kumar, “Design of Generative Multimodal AI Agents to Enable Persons with Learning Disability,” Companion Publication of the 25th International Conference on Multimodal Interaction, 2023, doi: 10.1145/3610661.3617514.

[27] T. K. Mohd, N. Nguyen, A. Y. Javaid, “Multi-modal data fusion in enhancing human-machine interaction for robotic applications: a survey,” arXiv preprint arXiv:2202.07732, 2022.

[28] P. J. Standen et al., “An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities,” British Journal of Educational Technology, vol. 51, no. 5, pp. 1748–1765, 2020.

[29] T. Baltrušaitis, C. Ahuja, L. P. Morency, “Challenges and applications in multimodal machine learning,” The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition-Volume 2, pp. 17–48, 2021.

[30] H. Alwahaby, M. Cukurova, Z. Papamitsiou, M. Giannakos, “The evidence of impact and ethical considerations of Multimodal Learning Analytics: A Systematic Literature Review,” The Multimodal Learning Analytics Handbook, pp. 289–325, 2022.

Downloads

Published

09-01-2026

How to Cite

A Review of Multimodal Artificial Intelligence: Ethical Challenges and Practical Benefits in Content Generation. (2026). Científica, 29(2), 1-11. https://doi.org/10.46842/ipn.cien.v29n2a08