Electromechanical differential for robots that require moving in curved accelerated motion
DOI:
https://doi.org/10.46842/ipn.cien.v29n2a04Keywords:
autonomous vehicles, electromechanical differential, hub motors, Ackerman geometry, electric accelerator, differential control, mobile roboticsAbstract
In recent years, interest in autonomous vehicles has grown, both for industrial use and for public and personal transportation. As is well known, although LiDAR sensors and cameras are required to detect obstacles and pedestrians; neural networks and artificial intelligence to interpret the environment and make decisions; and/or GPS and real-time maps for precise navigation; etc., these vehicles ultimately require wheels or legs to move. In this work, an electromechanical differential is presented, which allows controlling the accelerated differential movement required when an autonomous vehicle turns laterally. The term electromechanical differential refers to an arrangement of three accelerators: one to control the vehicle’s acceleration, connected in series with the accelerator that independently controls each drive wheel. The control of the differential acceleration of the hub motors of the rear wheels of an electric vehicle, or of a robot’s legs, is achieved through the steering mechanism of the vehicle’s front wheels, considering Ackermann differential geometry. This approach makes it possible to minimize the number of complex automatic control systems, such as sensors and encoders. The pivot steering of the front axle, operated by the steering wheel to perform the vehicle’s turn, has a square-type structure, where the pivot rotates on a hub fixed to the chassis, while the ends of the square terminate: one at the tire and the other at the steering rod. This turning movement is associated with the hinge mechanism of an electric pedal accelerator, which opens and closes with the wheel’s rotation. These ideas can be extrapolated to an electromechanical differential for robots with two or four legs, either by pivoting on one leg or by differential movement.
References
[1] T. M. Bandhauer, S. Garimella, T. F. Fuller, “A critical review of thermal issues in lithium-ion batteries,” Journal of The Electrochemical Society, vol. 158, no. 3, p. R1, 2011, doi: https://doi.org/10.1149/1.3515880
[2] O. Pratap-Jadhav, Rohith, M. Vadali, “Un controlador de par diferencial para robots móviles autónomos con ruedas,” Proceedings of the 5th International Conference on Advances in Robotics, art. 12, pp. 1–7, 2021.
[3] S. Sharma, R. Pegu, P. Barman, “Electronic differential for electric vehicle with single wheel reference,” Proceedings of the 2015 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN), pp. 1–5, 2015, doi: https://doi.org/10.1109/ICPDEN.2015.7084571
[4] N. Hashemnia, B. Asaei, “Comparative study of using different electric motors in the electric vehicles,” Proceedings of the 18th International Conference on Electrical Machines, pp. 1–5, 2008, doi: https://doi.org/10.1109/ICELMACH.2008.4800064
[5] K. Deepak, M. A. Frikha, Y. Benômar, M. E. Baghdadi, O. Hegazy, “In-wheel motor drive systems for electric vehicles: State of the art, challenges, and future trends,” Energies, vol. 16, no. 8, art. 3121, 2023, doi: https://doi.org/10.3390/en16083121
[6] J. Linares-Flores, O. Castro-Heredia, C. Garcia-Rodriguez, “Diseño e implementación de un diferencial electrónico para en vehículo eléctrico de tracción de cuatro ruedas,” 2022, available: http://repositorio.utm.mx:8080/jspui/handle/123456789/406
[7] M. Moazen, M. B. B. Sharifian, M. Sabahi, “Electric differential for an electric vehicle with 4WD/2WS ability,” 2016 24th Iranian Conference on Electrical Engineering (ICEE), pp. 751–756, 2016.
[8] A. J. Reséndiz Barrón, M. A. Ramos Pérez, A. Salas Flores, F. J. García Rodríguez, “Design and manufacture of electric vehicle body with solar panels for urban use,” Revista de Ciencias Tecnológicas, vol. 8, pp. 1–14, 2025, doi: https://doi.org/10.29057/rct.v8i0.1234
[9] C. Contò, N. Bianchi, “E-bike motor drive: A review of configurations and capabilities,” Energies, vol. 16, no. 1, art. 160, 2023, doi: https://doi.org/10.3390/en16010160
[10] H. Kahveci, H. Okumus, H. Ekici, “An electronic differential system using fuzzy-logic speed-controlled in-wheel brushless DC motors,” 4th International Conference on Power Engineering, Energy and Electrical Drives, pp. 881–885, 2013, doi: https://doi.org/10.1109/POWERENG.2013.6635670
[11] A. Haddoun, M. Benbouzid, D. Diallo, R. A. J. Jamel, K. Srairi, “Design and implementation of an electric differential for traction application,” 2010 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6, 2010, doi: https://doi.org/10.1109/VPPC.2010.5729106
[12] B. Tabbache, A. Kheloui, M. Benbouzid, “An adaptive electric differential for electric vehicles motion stabilization,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 104–110, 2022, doi: https://doi.org/10.1109/TVT.2022.3157489
[13] Y. Chen, J. Wang, “Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1534–1542, 2012, doi: https://doi.org/10.1109/TVT.2012.2104310
[14] R. N. Tuncay, O. Ustun, M. Yilmaz, C. Gokce, U. Karakaya, “Design and implementation of an electric drive system for in-wheel motor electric vehicle applications,” 2011 IEEE Vehicle Power and Propulsion Conference (VPPC), 2011.
[15] S. Konduri, E. O. Cobos-Torres, P. R. Pagilla, “Dinámica y control de un robot de accionamiento diferencial con deslizamiento de ruedas: Aplicación a la coordinación de múltiples robots,” Journal of Dynamic Systems, Measurement, and Control, vol. 139, no. 1, 2017, doi: https://doi.org/10.1115/1.4035006
[16] L. Clavero-Ordóñez, J. Fernández-Ramos, A. Gago-Calderón, “Electronic differential system for light electric vehicles with two in-wheel motors,” International Conference on Renewable Energies and Power Quality (ICREPQ’18), pp. 326–329, 2018, doi: https://doi.org/10.24084/repqj16.417
[17] F. Aghili, “Fault-tolerant torque control of BLDC motors,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 355–363, 2011, doi: https://doi.org/10.1109/TPEL.2010.2054112
[18] M. Yıldırım, H. Kurum, “Electronic differential system for an electric vehicle with four in-wheel PMSM,” 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020
[19] F. J. Perez-Pinal, I. Cervantes, A. Emadi, “Stability of electric differential for traction applications,” IEEE Transactions on Vehicular Technology, vol. 58, no. 8, pp. 3224–3233, 2009, doi: https://doi.org/10.1109/TVT.2009.2023754
[20] E. O. Cobos-Torres, S. Konduri, P. R. Pagilla, “Estudio del deslizamiento de las ruedas y las fuerzas de tracción en robots de accionamiento diferencial y estrategia de control para evitar el deslizamiento,” 2014 American Control Conference (ACC), 2014.
[21] Y. P. Yang, X. Y. Xing, “Design of electric differential system for an electric vehicle with dual wheel motors,” 2008 47th IEEE Conference on Decision and Control (CDC), pp. 4414–4419, 2008.
[22] A. Aggarwal, “Electronic differential in electric vehicle,” International Journal of Scientific and Engineering Research, vol. 4, no. 8, pp. 1322–1330, 2013.
[23] Y. Zhang, D. Hong, J. Chung, S. Velinsky, “Control de seguimiento robusto basado en un modelo dinámico de un robot móvil con ruedas con dirección diferencial,” 1998 American Control Conference (ACC), 1998.
[24] M. Kalyoncu, F. Demirbaş, “Seguimiento de trayectoria de robot móvil con accionamiento diferencial mediante un controlador de retroceso basado en PID y cinemático,” Selçuk University Journal of Engineering, Science and Technology, vol. 5, no. 1, pp. 1–15, 2017.
[25] D. Koladia, “Mathematical model to design rack and pinion Ackerman steering geometry,” International Journal of Scientific and Engineering Research, vol. 5, no. 7, pp. 716–720, 2014.
[26] A. J. Reséndiz-Barrón, Y. Jiménez-Flores, F. J. García-Rodríguez, A. Medina, D. A. Serrano-Huerta, “Instrumentation of an electronic–mechanical differential for electric vehicles with hub motors,” World Electric Vehicle Journal, vol. 16, no. 3, art. 179, 2025, doi: https://doi.org/10.3390/wevj16030179
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Daniel Armando Serrano Huerta, Jaime Abisai Reséndiz Barrón, Allan Ronier Diez Barroso-Agraz, Yolanda Jiménez Flores, Francisco Javier García Rodriguez (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.