Parabolas, Systems of Equations and Optimization: a Physical Interpretation in Electrical Engineering
DOI:
https://doi.org/10.46842/ipn.cien.v29n2a10Keywords:
Flujos de potencia, optimizaci´ón sin restricciones, funciones de varias variables, ense˜ñanza de la ingenier´ía el´ectricaAbstract
This paper presents a study of power flow analysis in a simple two-node electrical system, showing how elementary mathematical tools can generate meaningful physical interpretations. The problem is formulated as a system of two nonlinear equations, exploring the existence and feasibility of voltage solutions at the consumption node under different demand levels. The analysis reveals how a simple parabola can act as an operating boundary, and an alternative formulation is proposed as an unconstrained optimization problem. Overall, the study offers useful insights for both teaching and practical applications in electrical engineering and other disciplines.
References
[1] D. M. B. Dermitz, P. M. H. Jones, A. M. Medina, Z. O. Flores, “Análisis comparativo de planes de estudio de licenciaturas en ingeniería,” Odiseo: Revista electrónica de pedagogía, 2013, available: https://odiseo.com.mx/articulos/analisis-comparativo-de-planes-de-estudio-de-licenciaturas-en-ingenieria
[2] J. A. F. Bravo, “Neurociencias y enseñanza de la matemática. Prólogo de algunos retos educativos,” Revista Iberoamericana de Educación, vol. 51, no. 3, enero 2010.
[3] E. Rivera-Rivera, “El neuroaprendizaje en la enseñanza de las matemáticas: la nueva propuesta educativa,” Entorno, no. 67, pp. 157–168, 2019, available: https://rieoei.org/RIE/article/view/1832
[4] T. J. Overbye, “A power flow measure for unsolvable cases,” IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1359–1365, August 1994.
[5] J. D. Glover, T. J. Overbye, M. S. Sarma, Power Systems, Analysis and Design, 6th ed., Cengage Learning, 2017.
[6] A. Gómez-Expósito, A. J. Conejo, C. Cañizares, Eds., Electric Energy Systems: Analysis and Operation. CRC Press, 2008.
[7] C. del Buey de Andrés, “Todo es más sencillo con los hipercomplejos,” La gaceta de la RSME, vol. 22, no. 1, pp. 145–157, 2019.
[8] D. C. Struppa, M. E. Luna-Elizarraras, M. Shapiro, A. Vajiac, Bicomplex holomorphic functions: The algebra, geometry and analysis of bicomplex numbers, 1st ed., Basel, Switzerland: Birkhauser, 2015.
[9] R. Larson, B. H. Edwards, Cálculo 2 de Varias Variables, 9th ed., McGraw-Hill, 2010.
[10] J. E. Marsden, A. J. Tromba, Cálculo Vectorial, 3rd ed., Addison-Wesley Iberoamericana, 1988.
[11] E. K. P. Chong, S. H. Zak, An Introduction to Optimization, 4th ed., Wiley, 2013.
[12] R. Larson, B. H. Edwards, Cálculo, 9th ed., McGraw-Hill, 2010.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carlos Antonio Becerril Gordillo (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.