Evaluation of Mobile Equipment Loads on Buried Pipelines during Forestry Operations Using API RP 1102 and Empirical Soil–Tire Contact Models

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v29n2a07

Keywords:

API RP 1102, pipeline integrity, forestry operations, soil–tire contact, buried pipeline, combined stress

Abstract

 

This study applies the API RP 1102 (7th Edition) standard to assess the combined stresses on a buried API 5L X65 steel pipeline located in the Yumbo–Buenaventura section, subjected to heavy forestry machinery traffic. The load model was updated using the approach by Saarilahti (2002) for theoretical contact area (P/p), the elliptical tire–soil contact representation from Ala-Ilomäki et al. (2012), and deflection and surface roughness adjustments proposed by Cambi et al. (2015). This integration provides a more realistic estimation of the effective ground pressure transmitted to the buried pipeline. Results indicate that, at a burial depth of 1.4 m and wall thickness of 0.300 in, the effective combined stress (Seff) remains within the allowable limits defined by API RP 1102, ensuring the mechanical integrity and stability of the system under mobile loads. It is concluded that incorporating empirical field-based contact models enhances analytical accuracy and strengthens the applicability of API RP 1102 in tropical forestry environments.

References

[1] O. Tahvonen, J. Rämo, “Optimality of continuous cover vs. clear-cut regimes in managing forest resources,” Canadian Journal of Forest Research, vol. 46, no. 7, 2016. doi: 10.1139/cjfr-2015-0474

[2] E. R. Labelle, D. Jaeger, F. Majchrzak, “Selected environmental impacts of forest harvesting operations with varying degree of mechanization,” Croat. J. Forest Eng., vol. 40, no. 2, pp. 209–224, 2019. doi: 10.5552/crojfe.2019.537

[3] C. P. Albuquerque, et al., “Environmental impacts of mechanized timber harvesting in commercial eucalyptus plantations in Brazil,” Forests, vol. 15, no. 8, Aug. 2024. doi: 10.3390/f15081291

[4] Komatsu Forest, “Komatsu 898 forwarder: Technical specifications,” 2025. [Online]. Available: https://www.komatsuforest.com/our-machines/our-forwarders/898 [Accessed: Nov. 27, 2025]

[5] Komatsu Forest, “Komatsu 931XC harvester: Technical specifications,” 2025. [Online]. Available: https://www.komatsuforest.com/our-machines/our-harvesters/931xc [Accessed: Nov. 27, 2025]

[6] American Petroleum Institute, API RP 1160: Managing System Integrity for Hazardous Liquid Pipelines, 3rd ed., Washington, DC, USA, Feb. 2019 (reaffirmed 2024).

[7] M. Baker Jr. Inc., Stress Engineering Services, Inc., “Guidelines for the assessment of the impact of third-party mechanical damage on pipeline integrity,” U.S. Dept. Transp., Pipeline Hazardous Mater. Safety Admin., Washington, DC, USA, Rep. DTPH56-06-T-000011, Apr. 2009. [Online]. Available: https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/docs/technical-resources/pipeline/gas-distribution-integrity-management/65991/mechanicaldamagefinalreport.pdf

[8] Pipeline Association for Public Awareness, “Excavation Safety Guide – Pipeline Edition,” 2023. [Online]. Available: https://pipelineawareness.org/media/j1nevrv5/2023-excavation-safety-guide-pipeline-edition.pdf [Accessed: Nov. 27, 2025]

[9] Kiefner and Associates, Inc., “Stress assessment of buried pipes under road crossings or construction sites,” 2025. [Online]. Available: https://kiefner.com/stress-assessment-of-buried-pipes-under-road-crossings-or-construction-sites [Accessed: Nov. 27, 2025]

[10] M. Nazari, et al., “A meta-analysis of soil susceptibility to machinery-induced compaction in forest ecosystems across global climatic zones,” Curr. Forestry Rep., vol. 9, pp. 123–142, Jun. 2023. doi: 10.1007/s40725-023-00197-y

[11] American Petroleum Institute, API Recommended Practice 1102: Steel Pipelines Crossing Railroads and Highways, 7th ed. (incl. 2021 Errata), Washington, DC, USA, Dec. 2007.

[12] M. Saarilahti, “Soil interaction model: Contact area and ground pressure,” Dept. Forest Resource Manage., Univ. Helsinki, Working Papers 2, 2002. [Online]. Available: https://helda.helsinki.fi/server/api/core/bitstreams/f76aeb7a-bf28-4143-ae1e-b0bfaaa62ba3/content

[13] M. Saarilahti, “Soil interaction model,” in Development of a Protocol for Ecoefficient Wood Harvesting on Sensitive Sites (ECOWOOD), Project QLK5-1999-00991, Deliverable D2, Appendix 1, Univ. Helsinki, Finland, 2002.

[14] J. Ala-Ilomäki, T. Högnäs, P. Lamminen, M. Sirén, “Ground pressure of forest machines with different tire configurations,” Scand. J. Forest Res., vol. 27, no. 6, pp. 577–586, Aug. 2012.

[15] G. W. Meighs, et al., “Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region, USA,” Forest Ecol. Manag., vol. 339, pp. 124–138, Feb. 2015. doi: 10.1016/j.foreco.2014.11.030

[16] Ministerio de Agricultura y Desarrollo Rural, “Cifras sectoriales – Cadena forestal,” 2023. [En línea]. Disponible en: https://www.minagricultura.gov.co/sectores/cifras-sectoriales [Consultado: 27-nov-2025]

[17] Fedemaderas, “Estadísticas forestales colombianas 2023,” Federación Colombiana de Industriales de la Madera, 2023. [En línea]. Disponible en: https://fedemaderas.org.co/wp-content/uploads/2023/09/Estadistico-Forestal-Colombiano-2023.pdf [Consultado: 27-nov-2025]

[18] Unidad de Planificación Rural Agropecuaria (UPRA), “Zonificación de aptitud forestal comercial – Orinoquía,” 2022. [En línea]. Disponible en: https://upra.gov.co/wp-content/uploads/2022/06/Mapa-Aptitud-Forestal-Orinoquia.pdf [Consultado: 27-nov-2025]

[19] Gobernación de Santander, “Plan Departamental de Extensión Agropecuaria – Componente Forestal,” 2023. [En línea]. Disponible en: https://www.santander.gov.co [Consultado: 27-nov-2025]

[20] Cenit Transporte y Logística de Hidrocarburos, “Poliducto Cartago – Yumbo – Buenaventura,” 2025. [Online]. Available: https://www.cenit.com.co/infraestructura/poliductos/poliducto-cartago-yumbo-buenaventura [Accessed: Nov. 27, 2025]

[21] Cenit Transporte y Logística de Hidrocarburos, “Manual de servidumbre de hidrocarburos,” 2023. [Online]. Available: https://www.cenit.com.co/transparencia/Documents/Manual-Servidumbre-2023.pdf [Accessed: Nov. 27, 2025]

[22] Ecopetrol, “Informe de gestión sostenible 2023,” pp. 112–118, 2023. [Online]. Available: https://www.ecopetrol.com.co/wps/portal/Home/es/Transparencia/Informe-Gestion-Sostenible-2023.pdf [Accessed: Nov. 27, 2025]

[23] Superintendencia de Industria y Comercio (SIC), “Inventario nacional de poliductos 2024,” Base de Datos de Infraestructura Crítica, 2024. [En línea]. Disponible en: https://www.sic.gov.co/transparencia/infraestructura-critica/inventario-poliductos-2024 [Consultado: 27-nov-2025]

[24] Ministerio de Minas y Energía, “Sistema de Información de Combustibles – SICOM: Capacidad de transporte región Pacífica,” 2025. [En línea]. Disponible en: https://www.minenergia.gov.co/sicom/capacidad-transporte-pacifica [Consultado: 27-nov-2025]

[25] Komatsu Forest, “Komatsu 898 forwarder & 931XC harvester technical specifications,” Komatsu Forest AB, Umeå, Sweden, 2025. [Online]. Available: https://www.komatsuforest.com [Accessed: Nov. 27, 2025]

[26] Nokian Heavy Tyres Ltd., Forestry Tyre Technical Handbook, Nokia, Finland, 2024. https://www.nokiantyres.com/heavy/download-center/technical-tire-manual/

[27] LittleInch, “API RP 1102: Origin of equivalent contact area for wheel load,” Eng-Tips Forum, Oct. 12, 2017. [Online]. Available: https://www.eng-tips.com/threads/api-rp-1102-origin-of-equivalent-contact-area-for-wheel-load.431041 [Accessed: Nov. 27, 2025]

[28] N. Joshi, P. Ghosh, J. Brewer, L. Matta, “Comparison of buried pipeline crossing assessments using API RP 1102, analytical method and finite element approach,” in Proc. 13th Int. Pipeline Conf. (IPC), 2020.

[29] B. Chen, et al., “A study on the contact characteristics of tires–roads based on pressure-sensitive film technology,” Machines, vol. 11, no. 8, Aug. 2023. doi: 10.3390/ma16186323

[30] M. Partington and M. Ryans, “Understanding the nominal ground pressure of forestry equipment,” FPInnovations, Advantage Rep., vol. 12, no. 5, 2010. [Online]. Available: https://library.fpinnovations.ca/en/permalink/fpipub36838 [Accessed: Nov. 27, 2025]

[31] N. Ganesan, P. Vairavasundaram, “Terramechanics models for tracked vehicle–terrain interaction analysis: A review,” Arch. Mech. Eng., vol. 71, no. 1, pp. 107–133, 2024.

[32] A. Al-Ghamdi, M. A. Al-Osta, T. A. Saleh, A. A. Al-Ghamdi, “Evaluation of buried pipeline response to vehicle loads using American and European standards,” J. Pipeline Sci. Eng., vol. 3, no. 4, Dec. 2023.

[33] Global Energy Monitor, “Global Oil and Gas Extraction Tracker – Latin America pipelines,” 2024. [Online]. Available: https://globalenergymonitor.org/projects/global-oil-gas-extraction-tracker [Accessed: Nov. 27, 2025]

[34] J. E. Salguero Valencia, “Simulation of the operation of the trans-Ecuadorian pipeline (SOTE) under steady-state conditions,” M.S. thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2024. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/25742 [Accessed: Nov. 27, 2025]

[35] A. Salmivaara, J. Ala-Ilomäki, J. Uusitalo, M. Sirén, “Real-time rut risk mapping for forest harvesting using ERA5-Land soil moisture data,” Hydrol. Earth Syst. Sci., vol. 28, no. 5, pp. 1123–1140, Mar. 2024.

[36] O. Rauf, et al., “Evaluation of ground pressure, bearing capacity, and sinkage in rigid-flexible tracked vehicles on characterized terrain in laboratory conditions,” Sensors, vol. 24, no. 6, Mar. 2024. doi: 10.3390/s24061779

[37] American Petroleum Institute, API Standard 1104: Welding of Pipelines and Related Facilities, 21st ed. (incl. 2018 Errata), Washington, DC, USA, Sep. 2013.

[38] American Petroleum Institute and American Society of Mechanical Engineers, API 579-1/ASME FFS-1: Fitness-for-Service, 3rd ed., Washington, DC, USA, Jun. 2016.

Downloads

Published

08-01-2026

How to Cite

Evaluation of Mobile Equipment Loads on Buried Pipelines during Forestry Operations Using API RP 1102 and Empirical Soil–Tire Contact Models. (2026). Científica, 29(2), 1-10. https://doi.org/10.46842/ipn.cien.v29n2a07