Low-cost device for continuous monitoring of human organs during transportation

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v28n2a10

Keywords:

Real-time tracking, organ transport, TRIZ

Abstract

This research presents the development of a prototype for organ transport that enables real-time tracking of location and temperature. A comparison with existing prototypes and commercial products highlights the disadvantage of high costs associated with current solutions. The TRIZ methodology was employed to streamline prototype development, recognized in the scientific literature for its efficiency in accelerating prototyping processes. Results from equipment testing and their respective replicas are presented, along with recommendations for scaling the prototype further.

References

D. Pickel. “Hearth-in-a-Box Device Revolutionizes Organ Transport” Duke University School of Medicine. https://medschool.duke.edu/news/heart-box-device-revolutionizes-organ-transport (accessed Feb. 15, 2024).

H. B. Bellotti, M. T. Francoso, “System for transporting human organs”, Case Studies on Transport Policy, vol. 9, no. 2, pp. 431-442, Jun. 2021, doi: https://doi.org/10.1016/j.cstp.2021.01.005

R. López-Falcony, “Entrevista con Rodrigo López Falcony”, personal communication, (Mar. 2023)

N. Datta, S. G. Devaney, R. W. Busuttil, K. Azari, J. W. Kupiec-Weglinski, “Prolonged Cold Ischemia Time Results in Local and Remote Organ Dysfunction in a Murine Model of Vascularized Composite Transplantation”, American Journal of Transplantation, vol. 17, no. 10, pp. 2572-2579, Oct. 2017, https://doi.org/10.1111/ajt.14290

M. H. M. Chairi, M. Mogollón-González, J. Triguero-Cabrera, I. Segura-Jimenez, M. T. Villegas-Herrera, J. M. Villar-del Moral, “Impact of Ischemia and Preservation Times on Survival in Transplant Recipients From After Circulatory Death Donors”, Transplantation Proceedings, vol. 55, no. 10, pp. 2256-2258, Dec. 2023, https://doi.org/10.1016/j.transproceed.2023.08.033

J. F. Ding, J. H. Weng, C. C. Chou, “Assessment of key risk factors in the cold chain logistics operations of container carriers using best worst methods”, International Journal of Refrigeration, vol. 153, pp. 116-126, Sep. 2023, https://doi.org/10.1016/j.ijrefrig.2023.06.013

G. Li, J. Chen, Z. Wang, S. Kang, Y. Liu, X. Ai, C. Wang, S. Jiang, “CD47 blockade reduces ischemia/reperfusion injury in murine heart transplantation and improves donor heart preservation”, International Immunopharmacology, vol. 132, May 2024, https://doi.org/10.1016/j.intimp.2024.111953

J. D. McCully, P. J. del Nido, S. M. Emani, “Mitochondrial transplantation for organ rescue”, Mitochondrion, vol. 64, pp. 27-33, May 2022. https://doi.org/10.1016/j.mito.2022.02.007

Q. Liu, M. Liu, T. Yang, X. Wang, P. Cheng, H. Zhou, “What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury?”, Mitochondrion, vol. 72, pp. 72-83, Sep. 2023, https://doi.org/10.1016/j.mito.2023.08.001

TransMedics. “OCS Lungs”, https://www.transmedics.com/ocs-lung/, (accessed Feb. 17, 2024).

S. J. Pettit, M. C. Petrie, “Transplantation on Hearts Donated After Circulatory-Determined Death”, Circulation: Heart Failure, vol. 12, https://doi.org/10.1161/CIRCHEARTFAILURE.119.005991

S. Torai, K. Kurauchi, E. Kobayashi, “Evaluating a New Device for Reducing Second Warm Ischemia During Organ Transplantation in a Porcine Model of Kidney, Heart, and Pancreas Transplantation”, Transplantation Proceedings, vol. 155, no. 4, pp. 997-1004, May 2023, https://doi.org/10.1016/j.transproceed.2023.03.052

J. Bartosch. “UChicago Medicine using the newest, high-tech for transporting donor organs”, UChicago Medicine, https://www.uchicagomedicine.org/forefront/transplant-articles/2022/july/uchicago-medicine-using-new-technology-for-transporting-donor-organs-for-transplant, (accessed Feb. 17, 2024).

Stanford University. “Mobile Thermoelectric Cooler for Organ Transport (MoTec)”, Stanford Explore Technologies, https://techfinder.stanford.edu/technology/mobile-thermoelectric-cooler-organ-transport-motec#:~:text=MoTEC%2C%20a%20thermoelectric%20cooler%20designed,an%20inner%20organ%20storage%20chamber, (accessed Feb. 19, 2024).

C. Spreafico, D. Russo, “TRIZ Industrial Case Studies: A Critical Survey”, Procedia CIRP, vol. 39, pp. 51-56, 2016, https://doi.org/10.1016/j.procir.2016.01.165

S. Munje, S. Kulkarni, V. Vatsal, A. Amrao, S. Pankade, “A study on product development using the TRIZ and additive manufacturing”, materialstoday: PROCEEDINGS, vol. 72, pp. 1367-1371, https://doi.org/10.1016/j.matpr.2022.09.332

I. Ekmekci, M. Koksal, “Triz Methodology and an Application Example for Product Development”, in World Conference on Technology, Innovation and Entrepreneurship, Istanbul, Turkey, May 2015, pp. 2689-2698, https://doi.org/10.1016/j.sbspro.2015.06.481

K. Gadd, “Appendix I 39 Parameters of the Contradiction Matrix”, in TRIZ for Engineers: Enabling Inventive Problem Solving, 1st ed, U.S: Wiley, 2011, pp. 468-470, https://doi.org/10.1002/9780470684320.app1

Downloads

Published

16-01-2025

How to Cite

Low-cost device for continuous monitoring of human organs during transportation. (2025). Científica, 28(2), 1-8. https://doi.org/10.46842/ipn.cien.v28n2a10