Study in DC and AC Regime of Carbon Nanotube Diodes for High Frequency Applications

Authors

  • Hidelberto Macedo-Zamudio Instituto Politecnico Nacional Author
  • Aníbal Pacheco-Sánchez Technische Universität Dresden Author
  • Luis Manuel Rodríguez-Méndez Instituto Politecnico Nacional Author
  • Eloy Ramírez-García Instituto Politecnico Nacional Author
  • Donato Valdez-Pérez Instituto Politecnico Nacional Author

DOI:

https://doi.org/10.46842/ipn.cien.v23n2a01

Keywords:

CNT, Schottky diode, numerical device simulation, compact modeling, DC, high-frequency performance

Abstract

In this paper the static and dynamic performance of two different doping approaches, chemical and electrostatic, in carbon nanotubes (CNT) Schottky diodes with two-dimensional contact geometry is analyzed by means of numerical simulation and compact modeling. For the static performance, the main merit figures of the simulated devices are obtained, such as the rectification factor, storage time, threshold voltage and diode capacitance, and are compared with data available in the literature. Additionally, their transport mechanisms are studied. For the dynamic performance, the cutoff frequency in the forward bias region for the chemical doping diode is estimated based on the analysis of the equivalent circuit and the Schockley diode equation, reaching a frequency in the THz domain. In addition, changes to the design of the device are proposed to achieve an increase in the cutoff frequency, such as improved contact transparency or arrays in parallel of nanotubes.

References

M. Schröter, M. Claus, P. Sakalas, M. Haferlach, D, Wang, "Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the- Art Overview," IEEE Journal of Electron Devices Society, vol. 1, núm. 1, pp. 9-20, 2013. Disponible en: https://doi.org/10.1109/JEDS.2013.2244641, Consultado: 07 octubre, 2018.

R. R. Hartmann, J. Kono, M. E. Portno, "Terahertz science and technology of carbon nanomaterials," Nanotechnology, vol. 25, 322001, 2014. Disponible en: https://doi.org/10.1088/0957-4484/25/32/322001, Consultado: 15 octubre, 2018.

C. Biswas, S. Y. Lee, T. H. Ly, A. Ghosh, Q. N. Dang, Y. H. Lee, "Chemically Doped Random Network Carbon Nanotube pn Junction Diode for Rectifier," ACS Nano, vol. 5, núm. 12, pp 9817-9823, 2011. Disponible en: https://doi.org/10.1021/nn203391h, Consultado: 17 octubre, 2018.

J. U. Lee, P. P. Gipp, C. M. Heller, "Carbon nanotube p-n junction diodes," Appl. Phys. Lett., vol. 85, núm. 145, 2004. Disponible en: https://doi.org/10.1063/1.1769595, Consultado: 15 octubre, 2018.

A. Kaur, X. Yang, P. Chahal, "CNTs and Graphene-Based Diodes for Microwave and Millimeter-Wave Circuits on Flexible Substrates," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 6, núm. 12, pp. 1766-1775, 2016. Disponible en: https://doi.org/10.1109/TCPMT.2016.2586023, Consultado: 8 octubre, 2018.

E. Cobas, M. S. Fuhrer, "Microwave rectification by a carbon nanotube Schottky diode," Applied Physics Letters, vol. 93, pp. 043-120, 2008. Disponible en: https://doi.org/10.1063/1.2939095, Consultado: 8 octubre, 2018.

H. Macedo-Zamudio, A. Pacheco-Sanchez, E. Ramirez-Garcia, L. M. Rodriguez-Mendez, D. Valdez-Perez, M. Schröter, "Carbon nanotube Schottky diodes performance study: static and high-frequency characteristics," International Conference on Nanotechnology for Instrumentation and Measurement, (NANOfIM), Mexico, 2018. Disponible en: https://www.researchgate.net/publication/328828462_Carbon_nanotube_Schottk_diodes_performance_study_static_and_high-frequency_characteristics, Consultado: 21 octubre, 2018.

J. M. Park, S. N. Hong, "Contact and channel resistances of ballistic and non-ballistic carbon-nanotube field-effect transistors," J. Korean Phys. Soc., vol. 68, núm. 2, pp. 251-256, 2016. Disponible en: https://doi.org/10.3938/jkps.68.251, Consultado: 8 septiembre, 2018.

C. Chen, C. Liao, L. Wei, H. Zhong, R. He, Q. Liu, X. Liu, Y. Lai, C. Song, T. Jin, Y. Zhang, "Carbon nanotube intramolecularp-i-n junction diodes with symmetric and asymmetric contacts," Scientific Reports, vol. 6, núm. 22203, 2016. Disponible en: https://doi.org/10.1038/srep22203, Consultado: 23 octubre, 2018.

M. A. Hughes, K. P. Homewood, R. J. Curry, Y. Ohno, T. Mizutani, "An ultra-low leakage current single carbon nanotube diode with splitgate and asymmetric contact geometry," Applied Physics Letters, vol. 103, pp. 133-508, 2013. Disponible en: https://doi.org/10.1063/1.4823602, Consultado: 19 agosto, 2018.

J. Si, L. Liu, F. Wang, Z. Zhang, L. M. Peng, "Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits," ACS Nano, vol. 10, pp. 6737-6743, 2016. Disponible en: https://doi.org/10.1021/acsnano.6b02126, Consultado: 13 octubre, 2018.

E. D. Cobas, S. M. Anlage, M. S. Fuhrer, "Single Carbon Nanotube Schottky Diode Microwave Rectifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 59, núm. 10, pp. 2726-2732, 2011. Disponible en: https://doi.org/10.1109/TMTT.2011.2164548, Consultado: 11 octubre, 2018.

M. Claus, S. Mothes, S. Blawid, M. Schröter, "COOS: a wave-function based Schrödinger-Poisson solver for ballistic nanotube transistors," Journal of Computational Electronics, vol. 13, pp. 689-700, 2014. Disponible en: https://doi.org/10.1007/s10825-014-0588-6, Consultado: 23 octubre, 2018.

S. Mothes, M. Schröter, "Three dimensional transport simulations and modeling of densely packed CNTFETs," IEEE Transactions on Nanotechnology, 2018. Disponible en: https://doi.org/10.1109/TNANO.2018.2874109, Consultado: 16 octubre, 2018.

S. Mothes, M. Claus, M. Schröter, "Toward Linearity in Schottky Barrier CNTFETs," IEEE Transactions on Nanotechnology, vol. 14, núm. 2, pp. 372- 378, 2015, Disponible en: https://doi.org/10.1109/TNANO.2015.2397696, Consultado: 29 octubre, 2018.

S. Blawid, D. L. M. de Andrade, S. Mothes, M. Claus, "Performance Projections for a Reconfigurable Tunnel NanoFET," IEEE Journal of the Electron Devices Society, vol. 5, núm. 6, pp. 473-479, 2017. Disponible en: https://doi.org/10.1109/JEDS.2017.2756040, Consultado: 2 octubre, 2018.

A. Fediai, D. A. Ryndyk, G. Seifert, S. Mothes, M. Claus, M. Schröter, G. Cuniberti, "Towards an optimal contact metal for CNTFETs," Nanoscale, vol. 8, núm. 19, p. 10240, 2016. Disponible en: https://doi.org/10.1039/C6NR01012A, Consultado: 2 octubre, 2018.

A. Appenzeller, M. Radosavljevic, J. Knoch, Ph. Avouris, "Tunneling Versus Thermionic Emission in One-Dimensional Semiconductors," Phys. Rev. Lett, vol. 92, núm.4, 2004. Disponible en: https://doi.org/10.1103/PhysRevLett.92.048301, Consultado: 2 octubre, 2018.

A. Pacheco-Sanchez, M. Claus, "Device design-enabled Schottky barrier height extraction for nanoFETs based on the 1D Landauer-Büttiker equation," Applied Physics, Letters, vol. 111, núm. 16, 2017. Disponible en: https://doi.org/10.1063/1.4998807, Consultado: 2 octubre, 2018.

Downloads

Published

10-09-2024

How to Cite

Study in DC and AC Regime of Carbon Nanotube Diodes for High Frequency Applications. (2024). Científica, 23(2), 91-98. https://doi.org/10.46842/ipn.cien.v23n2a01