Numerical Solution of the Transient Flow in Horizontal Cylindrical Tanks Produced by the Injection of Airwith Three Nozzles

Authors

  • Arturo Lizardi-Ramos Universidad Autonoma Metropolitana Author
  • Hilario Terres-Peña Universidad Autonoma Metropolitana Author
  • Raymundo López-Callejas Universidad Autonoma Metropolitana Author
  • Mabel Vaca-Mier Universidad Autonoma Metropolitana Author
  • Sandra Chávez-Sánchez Universidad Autonoma Metropolitana Author

DOI:

https://doi.org/10.46842/ipn.cien.v24n2a08

Keywords:

deflectors, radial flow, azimuth velocity

Abstract

The numerical transient analysis of the flow generated by the injection of air in a horizontal cylinder that contains water and is open to the atmosphere, is presented. The air is introduced with three nozzles and, in front of them, two types of baffles with circular and triangular cross-section are placed. The mathematical model considers the Reynolds-Navier-Stokes equations in cylindrical coordinates for a two-phase viscous Newtonian fluid, in the turbulent regime, and the transitory state; and it is solved using the numerical finite element method. The results show the transient velocity fields in the crosssection of the container which coincides with the center of the nozzles that inject the air into the container. The behavior of azimuthal velocity along the diameter of the cylinder for different times and the aforementioned axial position is also analyzed. By comparing the fields of velocity in a steady state of the system with triangular baffles against circular ones it was found that: (a) the value of the velocity vector in the left upper part of the tank diminished 3.20%; and (b) the maximum average positive value of the azimuth velocity along the diameter of the container diminished 3.71%.

References

O. Galli-Merino, F. Miguel-Sal, Sistemas de recirculación y tratamiento de agua, Secretaría de Agricultura, Ganadería, Pesca y Alimentos CENADAC, Santa Ana-Corrientes, Argentina, 2007. [en linea]. Disponible en: http://www.minagri.gob.ar/sitio/areas/acuicultura/cultivos/otros/. Consultado: 10 enero 2019.

D. Halliday, M. Trenkel, IFA world fertilizer use manual, París: IFA, 1992. [en línea]. Disponible en: https://www.fertilizer.org/. Consultado: 25 marzo 2019.

A. Valencia, R. Paredes, M. Rosales, E. Godoy, J. Ortega, "Fluid dynamics of submerged gas injection into liquid in a model of copper converter," International Communications in Heat and Mass Transfer, vol. 31, núm. 1, pp. 21-30, enero, 2004. [en línea]. Disponible en: https://doi.org/10.1016/S0735-1933(03)00198-2. Consultado: 18 febrero 2019.

C. Real, L. Hoyos, F. Cervantes, R. Miranda., M. Palomar-Pardave, M. Barron, J. Gonzales. "Fluid characterization of copper converters," Asociación Argentina de Mecánica Computacional, vol. 26, núm. 15, pp. 1311-1323, octubre, 2007. [en línea]. Disponible en: https://cimec.org.ar/ojs/index.php/mc/article/view/1124/1075. Consultado: 03 marzo, 2019.

D. Chibwe, G. Akdogan, C. Aldrich, R. Eric, "CFD modelling of global mixing parameters in a Peirce-Smith converter with comparison to physical modelling," Chemical Product and Process Modeling, vol. 6, núm. 1, pp. 1-27, enero, 2011. [en línea]. Disponible en: https://espace.curtin.edu.au/bitstream/handle/20.500.11937/39656/204637.pdf?sequence=2. Consultado: 19 abril 2019.

T. Fernández, M. Toledo, J. F. Vázquez, "Variación de la intensidad del torbellino con el número de Reynolds", Científica, vol.14, núm. 4, pp. 173-178, octubre-dic. 2010.

M. AL-Mashhadani, S. Wilkinson, W. Zimmerman, "Airlift bioreactor for biological applications with microbubble mediated transport processes," Chemical Engineering Science, vol. 137, pp. 243-253, diciembre, 2015. [en línea]. Disponible en: https://doi.org/10.1016/j.ces.2015.06.032. Consultado:25 abril 2019.

A. N. Tijonov, A. A. Samarsky, Ecuaciones de la física matemática, Moscú: MIR, 1980. [en línea]. Disponible en: http://samarskii.ru/books/book1984.pdf. Consultado: 19 marzo 2019.

L. D. Landau, E. M. Lisfshitz, Fluids Mechanics, 2ª ed., Cambridge: Pergamon Press, 1987. [en línea]. Disponible en: https://www.elsevier.com/books/fluid-mechanics/landau/978-0-08-033933-7. Consultado: 08 mayo 2019.

C. Crowe, M. Sommerfeld and Y. Tsuji, Multiphase Flows with Droplets and Particles, 2ª ed, Boca Raton, Florida: CRC Press, 1998. [en linea]. Disponible en: https://www.crcpress.com/Multiphase-Flows-with-Droplets-and-Particles/Crowe-Schwarzkopf-Sommerfeld-Tsuji/p/book/9781439840504. Consultado: 26 abril 2019

C. R. Torres, B. J. Grau. Introducción a la mecánica de fluidos y transferencia de calor con COMSOL Multiphysics, 1ª ed., Barcelona: Addlink Media, 2007. [en línea]. Disponible en: https://www.addlink.es/productos/introduccion-a-la-mecanica-de-fluidos-y-transferencia-de-calor-con-comsol-multiphysics. Consultado: 25 enero 2019.

R. W. Pryor, Multiphysics modeling using COMSOL: a first principles approach, Boston: Jones & Bartlett Learning, 2011. [en línea]. Diponible en: http://teguhhady.lecturer.pens.ac.id/Multiphysics%20modeling%20using%20COMSOL.pdf. Consultado: 28 enero 2019.

Downloads

Published

10-09-2024

How to Cite

Numerical Solution of the Transient Flow in Horizontal Cylindrical Tanks Produced by the Injection of Airwith Three Nozzles. (2024). Científica, 24(2), 171-178. https://doi.org/10.46842/ipn.cien.v24n2a08