Misfire Analysis in Combustion Engines Using Vibration Signals Based on the Calculation and Reduction of Statistical Indicators

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v25n1a07

Keywords:

fault detection, internal combustion engine, linear discriminant analysis, statistical indicators, vibration analysis

Abstract

In this research work, a diagnosis methodology based on the calculation and reduction of statistical features that are obtained from vibration signals is proposed for the detection of misfire or spark failure in an internal combustion engine (ICE). This work is carried out by the characterization of vibration signals using four statistical features that are capable of modeling trends and describing changes in the acquired vibration signals. In addition, the proposed method introduces the consideration of dimensionality reduction techniques such as principal component analysis and linear discriminant analysis, which allows to obtain the reduction of an original feature space leading to achieve a visual representation of the characteristic patterns, represented by the set of statistical features, that characterizes different evaluated conditions in the ICE. The proposed method is evaluated on experimental data acquired during normal and misfire operation of an ICE in low and high speed regime. The processing of the acquired vibration signals and the application of the proposed diagnosis methodology is performed under Matlab®, which is a sophisticated software that may be used in a wide range of engineering applications. The results obtained in two-dimensional characteristic patterns clearly show the characterization of different operating conditions evaluated in the ICE, these results demonstrate that the methodology allows detecting faults in an ICE that are generated in the ignition system and that the detection of faults can be carried out effectively regardless of the rotational speed of the engine.

References

L. Warren y J. H. Haynes, Chevrolet/GMC Camionetas. Manual de Reparación, vol. 99040. California, USA: Haynes de Norte América, 1995.

A. Moosavian, G. Najafi, B. Ghobadian, M. Mirsalim, S. M. Jafari, y P. Sharghi, “Piston scuffing fault and its identification in an IC engine by vibration analysis”, Appl. Acoust., vol. 102, pp. 40-48, 2016, doi: https://doi.org/10.1016/j.apacoust.2015.09.002

J. Da Wu y C. Q. Chuang, “Fault diagnosis of internal combustion engines using visual dot patterns of acoustic and vibration signals”, NDT E Int., vol. 38, núm. 8, pp. 605-614, 2005, doi: https://doi.org/10.1016/j.ndteint.2005.02.007

S. Delvecchio, P. Bonfiglio, y F. Pompoli, “Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques”, Mechanical Systems and Signal Processing, vol. 99. Academic Press, pp. 661-683, 15-ene-2018, doi: https://doi.org/10.1016/j.ymssp.2017.06.033

J. Flett y G. M. Bone, “Fault detection and diagnosis of diesel engine valve trains”, Mech. Syst. Signal Process., vol. 72–73, pp. 316–327, 2016, doi: https://doi.org/10.1016/j.ymssp.2015.10.024

E. Ftoutou, M. Chouchane, y N. Besbès, “Internal combustion engine valve clearance fault classification using multivariate analysis of variance and discriminant analysis”, Trans. Inst. Meas. Control, vol. 34, núm. 5, pp. 566-577, 2012, doi: https://doi.org/10.1177/0142331211408492

J. J. Saucedo-Dorantes, M. Delgado-Prieto, R. A. Osornio-Rios, y R. De Jesus Romero-Troncoso, “Multifault Diagnosis Method Applied to an Electric Machine Based on High-Dimensional Feature Reduction”, IEEE Trans. Ind. Appl., vol. 53, núm. 3, pp. 3086-3097, 2017, doi: https://doi.org/10.1109/TIA.2016.2637307

K. Jafarian, M. Mobin, R. Jafari-Marandi, y E. Rabiei, “Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal monitoring”, Meas. J. Int. Meas. Confed., vol. 128, núm. March, pp. 527-536, 2018, doi: https://doi.org/10.1016/j.measurement.2018.04.062

A. Taghizadeh-Alisaraei y A. Mahdavian, “Fault detection of injectors in diesel engines using vibration time-frequency analysis”, Appl. Acoust., vol. 143, pp. 48-58, 2019, doi: https://doi.org/10.1016/j.apacoust.2018.09.002

J. Da Wu y J. C. Chen, “Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines”, NDT E Int., vol. 39, núm. 4, pp. 304-311, jun. 2006, doi: https://doi.org/10.1016/j.ndteint.2005.09.002

J. J. Saucedo-Dorantes, “Metodologías para mejorar la confiabilidad del diagnóstico de fallas en cadenas cinemáticas basado en algoritmos inteligentes y fusión de datos”, tesis de doctorado, mecatrónica, Universidad Autónoma de Querétaro, San Juan del Río, Querétaro, México, 2017.

R. O. Duda, P. E. Hart, y D. G. Stork, Pattern Classification, Second Edi. New York, N.Y., U.S.A: John Wiley & Sons, 2012.

X. Wan, D. Wang, P. W. Tse, G. Xu, y Q. Zhang, “A critical study of different dimensionality reduction methods for gear crack degradation assessment under different operating conditions”, Meas. J. Int. Meas. Confed., vol. 78, pp. 138-150, 2016, doi: https://doi.org/10.1016/j.measurement.2015.09.032

S. Theodoridis y K. Koutroumbas, Pattern Recognition, Third Edit. San Diego, California, USA: Academic Press, 2006.

S. I. Grossman y J.-J. Flores-Godoy, Álgebra Lineal, Septima Ed. D.F., México: McGraw-Hill, 2012.

A. Rustom J., Estadistica Descriptiva, Probabilidad e Inferencia, Primera ed. Santiago, Chile: Universidad de Chile, 2012.

Downloads

Published

10-09-2024

How to Cite

Misfire Analysis in Combustion Engines Using Vibration Signals Based on the Calculation and Reduction of Statistical Indicators. (2024). Científica, 25(1), 1-11. https://doi.org/10.46842/ipn.cien.v25n1a07