Functionalized Nanocellulose Extracted from Pineapple Stubble and African Palm Rachis

Authors

DOI:

https://doi.org/10.46842//ipn.cien.v25n2a08

Keywords:

adsorption, chromium, functionalization, fibrillary nanocellulose

Abstract

Cellulose nanofibers extracted from pineapple stubble and African palm rachis were subjected to functionalization with cholic acid. The nanocellulose was characterized by infrared spectroscopy, scanning electron microscopy, and contact angle. Subsequently, the influence of functionalized nanocellulose and non-functionalized nanocellulose, on the chromium adsorption of a Cr2(SO4)3 solution was evaluated by statistical analysis. It was determined that greater adsorption charges are obtained if non-functionalized nanofibers extracted from pineapple stubble are used, while for fibers extracted from African palm rachis, functionalization with cholic acid generates better adsorption charges. Finally, adsorption curves were made and coupled to 3 models of adsorption isotherms. It was established that the Sips model better describes the behavior of the experimental data, with a maximum charge of 8.605 mg Cr/g FNC (fibrillar nanocellulose) for the Non-functionalized nanocellulose extracted from pineapple stubble and a maximum charge of 5.638 mg Cr/g FNC for functionalized nanocellulose extracted from African palm rachis.

References

C. Cummins y M. Morris, “Using block copolymers as infiltration sites for development of future nanoelectronic devices: Achievements, barriers, and opportunities,” Microelectronic Engineering, vol. 195, pp. 74-85, 2018.

D. D. Dixit, A. Pattamatta, “Effect of uniform external magnetic-field on natural convection heat transfer in a cubical cavity filled with magnetic nano-dispersion,” International Journal of Heat and Mass Transfer, vol. 146, January, 2020.

X. Zhang, D. Meng y Z. Tang, “Preparation of radial ZnSe-CdS nano-heterojunctions through atomic layer deposition method and their optoelectronic applications,” Journal of Alloys and Compounds, vol. 777, pp. 102-108, 2019.

M. S. Amjad, N. Sadiq, H. Qureshi, G. Fareed y S. Sabir, “Nano particles: An emerging tool in biomedicine,” Asian Pacific Journal of Tropical Disease, vol. 5, pp. 767-771, 2015.

J. Francis y P. A. Michael, “Investigation of micro/nano motors based on renewable energy sources,” Materials Today: Proceedings, 2019.

X. Yan, C. Yi, Y. Wang y W. Cao, “Multi-catalysis of nano-zinc oxide for bisphenol A degradation in a dielectric barrier discharge plasma system: Effect and mechanism,” Separation and Purification Technology, vol. 231, January 2020.

C. M. Hussain, Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018.

M. Maliha, M. Herdman, R. Brammananth y M. McDonald, “Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applications,” Journal of Cleaner Production, 2019.

J. Luo, K. Huang, X. Zhou y Y. Xu, “Hybrid films based on holistic celery nanocellulose and lignin/hemicellulose with enhanced mechanical properties and dye removal,” International Journal of Biological Macromolecules, vol. 147, pp. 699-705 2020.

Q. Zhang, L. Zhang, W. Wu y H. Xiao, “Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review,” Carbohydrate Polymers, vol. 229, 2020.

S. Hokkanen, E. Repo, L. Westholm, S. Lou, T. Sainio y M. Silanpaa, “Adsorption of Ni2+, Cd2+, PO3- and NO3- from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite,” Chem. Eng. J., vol. 252, pp. 64-74, 2014.

N. Najib y C. Christodoulatos, “Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions,” Journal of Hazardous Materials, vol. 367, pp. 256-266, 2019.

K. Xie, L. Jing, W. Zhao y Y. Zhang, “Adsorption removal of Cu2+ and Ni2+ from waste water using nano-cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes,” J. Appl. Polym. Sci., vol. 122, pp. 2864-2868, 2011.

X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao y W. Song, “Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals,” J. Appl. Polym. Sci., vol. 25, nº 5, pp. 933 - 943, 2013.

T. Anirudhan, J. Deepa y J. Christa, “Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples,” J. Colloid Interface Sci., vol. 467, pp. 307-320, 2016.

S. Kamel, “Nanotechnology and its applications in lignocellulosic composites, a mini review,” Polym lett, vol. 1, nº 9, pp. 546–575, 2007.

G. Cui, M. L. a. Y. Chen, W. Zhang y J. Zhao, “Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater,” Carbohydrate Polymers, pp. 40-47, 2016.

S. Tural, M. Ece y B. Tural, “Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method,” Ecotoxicol. Environ. Saf., vol. 162, pp. 245-252, 2018.

B. Huang, Y. Liu, S. B. Lic y G. Zeng, “Effect of Cu (II) ions on the enhancement of tetracycline adsorption by Fe.O.@SiO.-Chitosan/Graphene oxide nanocomposite,” Carbohydr. Polym., vol. 157, pp. 576-585, 2016.

P. Liu, P. F. Borrell, M. Božič y V. Kokol, “Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag., Cu2+ and Fe3+ from industrial effluents,” Journal of Hazardous Materials, vol. 294, pp. 177-185, 2015.

S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou y M. Sillanpää, “Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr (VI) from aqueous solution,” Chemical Engineering Journal, vol. 283, pp. 445-452, 2016.

X. He, L. Cheng, Y. Wang, J. Zhao, W. Zhang y C. Lu, “Aerogels from quarternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water.,” Carbohydr. Polym., vol. 111, pp. 683–687, 2014.

K. Singh, J. Arora, T. Sinha y S. Srivastava, “Functionalization of nanocrystalline cellulose for decontamination of Cr (III) and Cr (IV) from aqueous system: computational modelling approach.,” Clean Technol. Environ. Policy, vol. 16, pp. 1179–1191, 2014.

S. M. Ramírez, “Boletín Estadístico Agropecuario,” Secretaría Ejecutiva de Planificación Sectorial Agropecuaria, San José, Costa Rica, 2019.

P. B. Picado, “Universidad de Costa Rica,” CICA. http://cica.ucr.ac.cr/?p=5925 (accesed March, 2019)

S. Amroune, A. Bezazi, A. Belaadi, C. Zhu, F. Scarpa y S. Rahatekar, “Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Composites Part A,” Applied Science and Manufacturing, pp. 98-106, 2014.

R. B. Saravanakumar y A. Kumaravel, “Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark,” Carbohydrate Polymers, pp. 1928-1933, 2013

A. Kardam, K. R. Raj, S. Srivastava y M. M. Srivastava, “Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution,” Clean Techn Environ Policy, vol. 16, pp. 385–393, 2014.

L. M. Suta, G. V. a. A. Ledeti y T. Vlase, “Solid-State Thermal Behaviour of Cholic Acid,” Rev. Chim., vol. 67, nº 2, pp. 329-331, 2016.

A. Ahmad, H. Ahmad y A.-K. Khalifa, “Characterization of treated date palm tree fiber as composite,” Composites: Part B, vol. 40, pp. 601-606, 2009.

A. Martina, M. A. Martins, O. d. Silva y L. Mattoso, “Studies on the thermal properties of sisal fiber and its constituents,” Thermochimica Acta, vol. 506, pp. 14-19, 2010.

V. Fiore, T. Scalici y A. Valenza, “Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites,” Carbohydrate Polymers, vol. 106, pp. 77-83, 2014.

R. Baskaran, A. Kumaravel, T. Nagarajan, P. Sudhakar y S. Saravanakumar, “Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark,” Carbohydrate Polymers, vol. 92, pp. 1928-1933, 2013.

N. Shopova y T. Milkova, “Thermochemical decomposition of cholic acid and its derivatives,” Thermochimica Acta, vol. 255, pp. 211-220, 1995.

J. C. V. Oss y K. M. Chaudhury, “Interfacial Lifshitz-van der Waals and Polar Interactions in Macroscopic Systems,” Dow Corning Corporation, 1988.

S. Dos-Santos y D. Goncalves, “Cambios en la mojabilidad en superficies de maderas tratadas térmicamente: Angulo de contacto y energía libre superficial,” Maderas, Cienc. tecnol., vol. 18, nº 2, 2016.

S. Hokkanen, E. Repo y M. Sillanpää, “Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose,” Chem. Eng. J., vol. 213, pp. 40-47, 2013.

L. Jin, Q. Sun, Q. Xu y Y. Xu, “Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine,” Bioresour. Technol., vol. 197, pp. 348-355, 2015.

T. Anirudhan y F. Shainy, “Adsorption behavior of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite for cadmium(II) from aqueous solutions,” J. Ind. Eng. Chem., vol. 32, pp. 157-166, 2015.

K. Yang, X. Wang, L. Zhu y B. Xing, “Competitive Sorption of Pyrene, Phenanthrene, and Naphthalene on Multiwalled Carbon Nanotubes,” Environ. Sci. Technol, vol. 40, nº 18, pp. 5804–5810, 2006.

J. N. Putro, A. Kurniawan, S. Ismadji y Y.-H. Ju, “Nanocellulose based biosorbents for wastewater treatment: Study of isotherm, kinetic, thermodynamic and reusability,” Environmental Nanotechnology, Monitoring & Management, vol. 8, pp. 134-149, 2017.

Downloads

Published

10-09-2024

How to Cite

Functionalized Nanocellulose Extracted from Pineapple Stubble and African Palm Rachis. (2024). Científica, 25(2), 1-19. https://doi.org/10.46842//ipn.cien.v25n2a08