New configuration of the zero-length column technique to determine the diffusion coefficients and isotherms of pure components and mixtures in molecular sieves

Authors

  • Jaquebet Vargas-Bustamante Universidad Nacional Autonoma de Mexico Author
  • Pedro Martínez-Ortiz Instituto Politecnico Nacional Author
  • Jorge Balmaseda-Era Universidad Nacional Autonoma de Mexico Author

DOI:

https://doi.org/10.46842/ipn.cien.v26n1a01

Keywords:

Zero-length column, diffusion, hydrocarbon separation

Abstract

A new configuration of the zero-length column (ZLC) technique was developed, which allows the use of different chromatography variants to quickly determine the diffusion coefficients and isotherms of pure components and mixtures in molecular sieves. The innovative design allows all studies to be performed on a single sample, facilitating the use of the parameters in theoretical models or molecular simulations. One of the key features of the new system is that it is possible to carry out the adsorption and separation process of olefins and paraffin using 5 to 15 mg of the adsorbent. By means of two flame ionization detectors, it is possible to determine the composition at the outlet of both columns and to study the desorption profiles. Through two 4- and 6-way valves communicating with two pairs of mass flow controllers, a configuration for kinetic and equilibrium measurements was designed. With the help of LabVIEW software and DAQ cards, the whole experimental process was managed. The new ZLC setup was applied to study the adsorption and separation of CH4 and C2H5 on zeolite 5A, with which the new experimental setup was validated.

References

Industrial Tecnologies Program, Hybrid separations/distillation technology: Research opportunities for energy and emissions reduction, 2005 (Study conducted for the U.S. Department of Energy by the University of Texas at Austin, the Oak Ridge National Laboratory, and the American Institute of Chemical Engineers).

K. Othmer, Encyclopedia of Chemical Technology, 5. ed., John Wiley & Sons Inc, 2010.

A. Dabrowski, “Adsorption: from theory to practice”, Advances in Colloid and Interface Science, vol. 93, pp. 135–224, Oct. 2001, doi: https://doi.org/10.1016/S0001-8686(00)00082-8

a) Z. R. Herm, E. D. Bloch, J. R. Long, “Hydrocarbon Separations in Metal–Organic Frameworks”, Chem. Mater, vol, 26, pp. 323, Nov. 2014. b) Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren, B. Chen, “Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures”, Energy Environ. Sci., vol. 9, pp. 3612, 2016.

W. Liang, Y. Wu, H. Xiao, J. Xiao, Y. Li, Z. Li, “Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations”, AIChE J.,vol. 64, pp. 3390, Apr. 2018, doi: https://doi.org/10.1002/smll.201900058

Lin, J. Y., “Molecular sieves for gas separation”, Science, vol. 353, pp. 121-122, Jul. 2016, doi: https://doi.org/10.1126/science.aag2267

P. J. Bereciartua, Á. Cantín, A. Corma, J. L. Jordá, M. Palomino, F. Rey, S. Valencia, E. W. Corcoran, P. Kortunov, P. I. Ravikovitch, A. Burton, C. Yoon, Y. Wang, C. Paur, J. Guzman, A. R. Bishop, G. L. Casty, “Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene“, Science, vol. 358, pp. 1068, Nov. 2017

a) R. Schoellner, U. Mueller, “Influence of Mono- and Bivalent Cations in 4A-Zeolites on the Adsorptive Separation of Ethene and Propene from Crack-Gases”, Adsorpt. Sci. Technol., vol. 3, pp. 167, Sep. 1986. b) V. R. Choudhary, S. Mayadevi, A. P. Singh, “Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites”, J. Chem. Soc., vol. 91, pp. 2935, 1935.

A. Dabrowski, Adsorption: from theory to practice. Advances in Colloid and Interface Science, 93, pp. 135–224, 2001.

a) Z. R. Herm, E. D. Bloch, J. R. Long, Chem. Mater. 2014, 26, 323; b) Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren, B. Chen, Energy Environ. Sci. 2016, ., 3612; c) D. Banerjee, J. Liu, P. K. Thallapally, Comment. Inorg. Chem. 2015, 35, 18.

M. Eic, D. M. Ruthven, “A new experimental technique for measurement of intracrystalline diffusivity”, Zeolites, vol. 8, pp. 40–45, Jan. 1988, doi: https://doi.org/10.1016/S0144-2449(88)80028-9

D. M. Ruthven, S. Brandani, M. Eic. “Measurement of diffusion in microporous solids by macroscopic methods”. In Molecular Sieves - Science and Technology, vol. 7, pp. 45–84, Dec. 2005.

BP Statistical, “Review of World Energy”, https://www.bp.com/es_es/spain/home/noticias/notas-de-prensa/bp-statistical-review-2019.html, (accesed Feb. 23, 2019).

C. A. Scholes, G. W. Stevens, and S. E. Kentish, "Membrane gas separation applications in natural gas processing," Fuel, vol. 96, pp. 15-28, Jun 2012. [Online]. Available: https://doi.org/10.1016/j.fuel.2011.12.074

Hydrocarbon processing, “Petrochemical Processes”, http://libros.organica1a.org/OPS1/petroquimica/Procesos_petroquimicos10b.pdf, (accesed Mar. 23, 2020).

J. Campbell, Gas Conditioning and Processing. Vol. 1: The Basic Principles. Ed. Campbell Petroleum Series. USA, 2001, pp. 1-43.

V. Valco, “valve applications”, https://www.vici.com/, (accesed Jul. 5, 2018).

Horiba, “Mass flow controler”, https://www.horiba.com/en_en/ (accesed Jul. 5, 2018).

J. Crank, The Mathematics of Diffusion, London, Inglaterra, Oxford University Press, 2003.

F. Brandani, D. M. Ruthven, C. G. Coe. “Measurement of adsorption equilibrium by the zero length column (zlc) technique part 1: Single component systems”, Ind. Eng. Chem. Res., vol. 42, no. 7, pp. 1451–1461, Mar. 2003, doi: https://doi.org/10.1021/ie020573f

H. Wang, S. Brandani, G. Lin, X. Hu., “Flowrate correction for the determination of isotherms and darken thermodynamic factors from zero length column (ZLC) experiments”, Adsorption, vol. 17, pp. 687–694, Aug. 2011, doi: https://doi.org/10.1007/s10450-011-9364-0

S. l. Semenova , “Polymer membranes for hydrocarbo separation and removal”, Journal of Membrane Science, vol. 231, pp. 189-207, Mar. 2004.

D.M. Ruthven, Principles of Adsorption & Adsorption Processes, Canada., John Wiley & sons, 1984.

J. Karger, D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, New York, E.U., Willey Interscience:, 1992.

Mofarahi, M.; Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 2012, 19, 101–110.

L. Garcı́a, Y. Poveda, M. Khadivi, G. Rodríguez, O. Görke, E. Esche, H. Godini, G. Wozny, A. Orjuela., “Synthesis and Granulation of a 5A Zeolite-Based Molecular Sieve and Adsorption Equilibrium of the Oxidative Coupling of Methane Gases”. Journal of Chemical & Engineering Data, vol. 62, no. 4, pp.1550–1557, Mar. 2017, doi: https://doi.org/10.1021/acs.jced.7b00061

Mofarahi, M.; Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 2012, 19, 101–110.

C.G. Coe, et al., “Chabazite for gas separation” in Gas Separation Technology, Amsterdam, Elsevier, 1990, pp. 149-159.

M. Ruthven, “Diffusion in type a zeolites: New insights from old data”, Microporous and Mesoporous Materials, vol. 162, pp. 69–79, Nov. 2012, doi: https://doi.org/10.1016/j.micromeso.2011.12.025

L. Garcı́a, Y. Poveda, M. Khadivi, G. Rodríguez, O. Görke, E. Esche, H. Godini, G. Wozny, A. Orjuela., “Synthesis and Granulation of a 5A Zeolite-Based Molecular Sieve and Adsorption Equilibrium of the Oxidative Coupling of Methane Gases”. Journal of Chemical & Engineering Data, vol. 62, no. 4, pp.1550–1557, Mar. 2017, doi: https://doi.org/10.1021/acs.jced.7b00061

Downloads

Published

10-09-2024

How to Cite

New configuration of the zero-length column technique to determine the diffusion coefficients and isotherms of pure components and mixtures in molecular sieves. (2024). Científica, 26(1), 1-12. https://doi.org/10.46842/ipn.cien.v26n1a01