Evaluation of the incidence of the geometry of the reflection area in the optical performance of a handmade prototype of a parabolic trough concentrator
DOI:
https://doi.org/10.46842/10.46842/ipn.cien.v26n1a06Keywords:
Monte Carlo ray tracing, optical performance, parabolic-prough collectors, SolTrace, concentration ratioAbstract
This article aims to evaluate the incidence of the geometry of the reflection area on the optical performance of a small-scale system of parabolic trough concentrates. The system was developed and tested to heat water or generate steam in the Unidades Tecnológicas de Santander, Bucaramanga, Colombia. Optical factors from the actual prototype were taken into account to perform a Monte Carlo ray tracing analysis, applying the SolTrace Tool. The real concentration system was subjected to a comparison with two geometrically different systems; a concentrator with dimensions smaller than the real system and one with larger dimensions. These were used to determine the optical performance and concentration ratios, to determine the relationship between these two parameters and the performance of the unit. The results obtained showed that the reflection area directly affects the optical performance and the concentration evidence of the device.
References
J. J. C. S. Santos, J. C. E. Palacio, A. M. M. Reyes, M. Carvalho, A. J. R. Freire, M. A. Barone, "Chapter 12 - Concentrating Solar Power," en Advances in Renewable Energies and Power Technologies, I. Yahyaoui, Ed. Elsevier, 2018, pp. 373-402. doi: https://doi.org/10.1016/B978-0-12-812959-3.00012-5
R. Pitz-Paal, "Chapter 19 - Solar Energy – Concentrating Solar Power," en Future Energy, 2nd ed., T. M. Letcher, Ed. Boston: Elsevier, 2014, pp. 405-431. doi: https://doi.org/10.1016/B978-0-08-099424-6.00019-3
H. Price et al., "Chapter 20 - Concentrating solar power best practices," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 725-757. doi: https://doi.org/0.1016/B978-0-12-819970-1.00020-7
E. Z. Moya, "Chapter 7 - Parabolic-trough concentrating solar power systems," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds. Woodhead Publishing, 2021, pp. 219-266. doi: https://doi.org/10.1016/B978-0-12-819970-1.00009-8
B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, J. G. Ascanio-Villabona, M. A. Duran-Sarmiento, A. D. Rincón-Quintero, "Development of a Fresnel Artisanal System for the Production of Hot Water or Steam," en Recent Advances in Electrical Engineering, Electronics and Energy, Cham, 2021, pp. 196-209. doi: https://doi.org/10.1007/978-3-030-72212-8_15
B. E. T. Tarazona-Romero, A. C. Celador, C. L. S. Rodriguez, J. G. A. Villabona, A. D. R. Quintero, "Design and construction of a solar tracking system for Linear Fresnel Concentrator," Periodicals of Engineering and Natural Sciences, vol. 9, n.o 4, oct. 2021, doi: https://doi.org/10.21533/pen.v9i4.1988
W. Schiel, T. Keck, "Chapter 9 - Parabolic dish concentrating solar power systems," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds., Woodhead Publishing, 2021, pp. 311-355. doi: https://doi.org/10.1016/B978-0-12-819970-1.00007-4
L. L. Vant-Hull, "Chapter 8 - Central tower concentrating solar power systems," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds., Woodhead Publishing, 2021, pp. 267-310. doi: https://doi.org/10.1016/B978-0-12-819970-1.00019-0
W. D. Steinmann, C. Prieto, "24 - Thermal storage for concentrating solar power plants," en Advances in Thermal Energy Storage Systems, 2nd ed., L. F. Cabeza, Ed., Woodhead Publishing, 2021, pp. 673-697. doi: https://doi.org/10.1016/B978-0-12-819885-8.00024-3
B. E. Tarazona-Romero, Á. Campos-Celador, Y. A. Muñoz-Maldonado, C. L. Sandoval-Rodríguez, J. G. Ascanio-Villabona, "Prototype of lineal solar collector Fresnel: Artesanal system for the production of hot water and/or water vapor," Visión electrónica, vol. 14, n.o 1, Art. n.o 1, ene. 2020, doi: https://doi.org/10.14483/22484728.16013
A. Khosravi, M. Malekan, J. J. G. Pabon, M. E. H. Assad, "Chapter 5 - Solar power tower system," en Design and Performance Optimization of Renewable Energy Systems, M. E. H. Assad y M. A. Rosen, Eds. Academic Press, 2021, pp. 61-83. doi: https://doi.org/10.1016/B978-0-12-821602-6.00006-7
A. Häberle, D. Krüger, "Chapter 18 - Concentrating solar technologies for industrial process heat," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds., Woodhead Publishing, 2021, pp. 659-675. doi: https://doi.org/10.1016/B978-0-12-819970-1.00011-6
K. Lovegrove, J. Pye, "Chapter 2 - Fundamental principles of concentrating solar power systems," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds., Woodhead Publishing, 2021, pp. 19-71. doi: https://doi.org/10.1016/B978-0-12-819970-1.00013-X
K. Lovegrove, W. Stein, "Chapter 1 - Introduction to concentrating solar power technology," en Concentrating Solar Power Technology, 2nd ed., K. Lovegrove y W. Stein, Eds., Woodhead Publishing, 2021, pp. 3-17. doi: https://doi.org/10.1016/B978-0-12-819970-1.00012-8
M. Malekan, A. Khosravi, M. El Haj Assad, "Chapter 6 - Parabolic trough solar collectors," en Design and Performance Optimization of Renewable Energy Systems, M. E. H. Assad y M. A. Rosen, Eds. Academic Press, 2021, pp. 85-100. doi: https://doi.org/10.1016/B978-0-12-821602-6.00007-9
B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Maldonado-Muñoz, "Can solar desalination be small and beautiful? A critical review of existing technology under the appropriate technology paradigm," Energy Research & Social Science, vol. 88, p. 102510, jun. 2022, doi: https://doi.org/10.1016/j.erss.2022.102510
H. Parlamış, E. Özden, M. S. Büker, "Experimental performance analysis of a parabolic trough solar air collector with helical-screw tape insert: A comparative study," Sustainable Energy Technologies and Assessments, vol. 47, pp. 101-562, oct. 2021, doi: https://doi.org/10.1016/j.seta.2021.101562
K. Mohammadi, S. Khanmohammadi, J. Immonen, K. Powell, "Techno-economic analysis and environmental benefits of solar industrial process heating based on parabolic trough collectors," Sustainable Energy Technologies and Assessments, vol. 47, p. 101412, oct. 2021, doi: https://doi.org/10.1016/j.seta.2021.101412
J. Fredriksson, M. Eickhoff, L. Giese, M. Herzog, «A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application», Solar Energy, vol. 215, pp. 266-310, feb. 2021, doi: https://doi.org/10.1016/j.solener.2020.12.017
T. K. Aseri, C. Sharma, T. C. Kandpal, "Cost reduction potential in parabolic trough collector based CSP plants: A case study for India," Renewable and Sustainable Energy Reviews, vol. 138, p. 110658, mar. 2021, doi: https://doi.org/10.1016/j.rser.2020.110658
B. H. Upadhyay et al., "Design, development and techno economic analysis of novel parabolic trough collector for low-temperature water heating applications," Case Studies in Thermal Engineering, vol. 26, p. 100978, ago. 2021, doi: https://doi.org/10.1016/j.csite.2021.100978
P. P. Dutta et al., "Modeling and performance evaluation of a small solar parabolic trough collector (PTC) for possible purification of drained water," Materials Today: Proceedings, may 2021, doi: https://doi.org/10.1016/j.matpr.2021.04.489
S. M. Sadegh Hosseini, M. S. Dehaj, "An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids," Energy, vol. 234, p. 121317, nov. 2021, doi: https://doi.org/0.1016/j.energy.2021.121317
B. E. Tarazona-Romero, Y. A. M. Maldonado, A. C. Celador, O. L. Pérez, "Optical Performance Assessment of a Handmade Prototype of Linear Fresnel Concentrator," Periodicals of Engineering and Natural Sciences, vol. 9, n.o 4, Art. n.o 4, oct. 2021, doi: https://doi.org/0.21533/pen.v9i4.1987
A. Malan, K. Ravi Kumar, "A comprehensive review on optical analysis of parabolic trough solar collector," Sustainable Energy Technologies and Assessments, vol. 46, p. 101305, ago. 2021, doi: https://doi.org/10.1016/j.seta.2021.101305
R. Siva Subramanian, G. Kumaresan, R. Palanivel, P. Nishanth kalathil, B. Nirmal, "Comparative performance analysis of parabolic trough solar collector by varying absorber surface," Materials Today: Proceedings, vol. 45, pp. 1217-1221, ene. 2021, doi: https://doi.org/10.1016/j.matpr.2020.04.248
A. Gowda, S. Dassappa, R. Hanumanthrappa, "Theoretical prediction of solar heat flux intensity on parabolic trough collector systems," Materials Today: Proceedings, vol. 26, pp. 2231-2236, ene. 2020, doi: https://doi.org/10.1016/j.matpr.2020.02.484
A. K. Ramasamy, M. Ganesh, K. Rajamani, A. K. Loganathan, R. Rangaswamy, "Investigation of concentrated solar collector with discretized flat mirrors in parabolic arrangement," Energy for Sustainable Development, vol. 64, pp. 25-34, oct. 2021, doi: https://doi.org/10.1016/j.esd.2021.07.005
S. Wu, R. Tang, C. Wang, "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, vol. 233, p. 121175, oct. 2021, doi: https://doi.org/10.1016/j.energy.2021.121175
F. I. Nascimento, E. W. Zavaleta-Aguilar, J. R. Simões-Moreira, "Algorithm for sizing parabolic-trough solar collectors," Thermal Science and Engineering Progress, vol. 24, p. 100932, ago. 2021, doi: https://doi.org/10.1016/j.tsep.2021.100932
S. E. Ghasemi, A. A. Ranjbar, "Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: A CFD modelling study," Journal of Molecular Liquids, vol. 222, pp. 159-166, oct. 2016, doi: https://doi.org/10.1016/j.molliq.2016.06.091
S. Marrakchi, Z. Leemrani, H. Asselman, A. Aoukili, A. Asselman, "Temperature distribution analysis of parabolic trough solar collector using CFD," Procedia Manufacturing, vol. 22, pp. 773-779, ene. 2018, doi: https://doi.org/10.1016/j.promfg.2018.03.110
N. Kincaid, G. Mungas, N. Kramer, M. Wagner, G. Zhu, "An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver," Applied Energy, vol. 231, pp. 1109-1121, dic. 2018, doi: https://doi.org/10.1016/j.apenergy.2018.09.153
W. Peng, O. K. Sadaghiani, "Geometrical variation in receiver tube of SEGS LS-2 parabolic trough collector (PTC) based on heat flux distribution to improve the thermal performance," International Journal of Thermal Sciences, vol. 163, p. 106858, may 2021, doi: https://doi.org/10.1016/j.ijthermalsci.2021.106858
J. González Martínez, Y. C. Villabona Niño, "Análisis óptico y térmico de un prototipo de colector de concentración solar lineal cilíndrico parabólico, aplicando los softwares Soltrace-Tonatiuh con el fin de identificar y definir mejoras en el diseño geométrico del modelo," ago. 2021, Accedido: 1 de febrero de 2022. [online]. Disponible en: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/7228
A. R. Arenas García, J. C. Jaimes Orostegui, "Evaluación óptica y térmica de un prototipo de colector de concentración solar lineal cilíndrico parabólico (CSP), aplicando los softwares SOLTRACE y TRNSYS," nov. 2021, Accedido: 1 de febrero de 2022. [online]. Disponible en: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/7821
L. F. Saavedra Quintero, D. F. Sánchez Martínez, "Automatización de un sistema de seguimiento solar en un eje para un prototipo de colector lineal tipo Fresnel de las Unidades Tecnológicas de Santander," abr. 2021, Accedido: 27 de septiembre de 2021. [online]. Disponible en: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/5828
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Instituto Politecnico Nacional
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.