State of the art review and analysis for compliant mechanisms: design methods and applications

Authors

DOI:

https://doi.org/10.46842/ipn.cien.v26n1a08

Keywords:

compliant mechanisms, topological optimization, finite elements, SIMP, BESO

Abstract

In mechanical systems, the importance of the correct application of design criteria must be observed in order to avoid failures related to fatigue, undesired deformations and wear that affect the precision of their displacements. For this reason, nowadays the development of mechanical devices based on compliant mechanisms is having an area of opportunity. This paper refers to the different methods and techniques (mainly those based on topological optimization) to address the inherent complexity of the development of complaint mechanisms, so it presents a review and analysis of the state of the art of the different methods that exist in the design of complaint mechanisms, to identify their limitations for the design in any engineering application.

References

S. Kota, “Compliant systems using monolithic mechanisms,” Smart Materials Bulletin, vol. 3, pp. 7-10, Mar. 2001.

L. L. Howell, S.P. Magleby, B. M. Olsen, Handbook of Compliant Mechanism, 1ª ed, United Kingdom: John Wiley & Sons, 2013.

O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mechanics of Structures and Machines, vol. 25, no. 4, pp. 493-524, 1997.

F. J. Ramírez-Gil, “Diseño óptimo de micromecanismos tridimensionales con actuación electrotérmica utilizando optimización topológica y unidades de procesamiento gráfico (GPU),” Tesis de Maestría, Ingeniería Mecánica, Universidad Nacional de Colombia, Medellín, Colombia, 2013.

C. C. Lan, J. Y. Wang, “Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2012, pp. 386-391.

C. A. Narváez, D. A. Garzón-Alvarado, “Síntesis topológica de mecanismos flexibles para aplicaciones biomédicas,” Rev. Cubana de investigaciones Biomédicas, vol. 29, no. 1, pp. 1-16, ene. 2010.

M. Ling, J. Cao, L.L. Howell, M. Zeng, “Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: A semi-analytical matrix displacement method,” Mechanism and Machine Theory, vol. 125, pp. 169–184, Apr. 2018, doi: https://doi.org/10.1016/j.mechmachtheory.2018.03.014

S. Noveanu, N. Lobontiu, J. Lazaro, D. Mandru, “Substructure compliance matrix model of planar branched flexure-hinge mechanisms: Design, testing and characterization of a gripper,” Mechanism and Machine Theory, vol. 91, pp. 1-20, doi: https://doi.org/10.1016 /j.mechmachtheory.2015.04.001

C. M. Pérez-Madrid, “Optimización topológica de mecanismos flexibles,” in La Ingeniería y sus Aplicaciones: Una Perspectiva desde la Industria, la Investigación y la Educación, 1ª ed, Medellín, Colombia: Serie de libros de ingeniería, 2020, pp. 153-161, available: https://sites.google.com/view/siia-2020/libro

A. An, “Por qué las Máquinas Flexibles son Mejores,” Veritasium en español, 2019 [video en línea], available: https://www.youtube.com/watch?v=zloPStY2mbI&t=208s

J. A. Gallego, J. Herder, “Synthesis methods in compliant mechanisms: an overview,” Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, California, USA, August-September 2009, pp. 1-22.

T. L. Thomas, V. K. Venkiteswaren, G. K. Ananthasuresh, S. Misra, “Surgical applications of compliant mechanisms: a review,” Journal of Mechanisms and Robotics, vol. 13, enero 2021, doi: https://doi.org/10.1115/1.4049491

G. I. N. Rozvany, “A critical review of established methods os structural topology optimization,” Structural and Multidisciplinary Optimization, vol. 37, no. 3, pp. 217-237, 2017, doi: https://doi.org/10.1007/s00158-007-0217-0

M. P. Bendsoe, N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Computer Methods in Applied Mechanics and Engineering, vol. 71, no. 2, pp. 197-224, 1988.

G. I. N. Rozvany, M. Zhou, and T. Birker, “Generalized shape optimization without homogenization”, Structural optimization, vol. 4, no. 3-4, pp. 250-252, 1992.

Dassault Systemes, “Método SIMP para optimización de topología.” Ayuda en línea de SolidWorks. http://help.solidworks.com/2019/spanish/SolidWorks/cworks/c_simp_method_topology.htm#vdl1527111485501 (accesed Sep. 27, 2021).

M. P. Bendsoe, “Optimal shape design as a material distribution problema”, Structural Optimization, vol. 1, pp. 193-202, 1989.

X. Huang, Y.M. Xie, “Evolutionary topology optimization of continuum structures with an additional displacement constraint,” Structural and Multidisciplinary Optimization, vol. 40, no. (1-6), pp. 409-416, doi: https://doi.org/10.1007/s00158-009-0382-4

Y. Li, X. Huang, Y.M. Xie, S.W. Zhou, “Evolutionary topology optimization of hinge-free compliant mechanisms,” International Journal of Mechanical Sciences, vol. 86, pp. 69–75, doi: https://doi.org/10.1016/j.ijmecsci.2013.10.01

BYU CMR, “research-areas-and-applications.” Compliant Mechanism Research. https://www.compliantmechanisms.byu.edu/ (accesed Sep. 27, 2021).

M. Simi, N. Tolou, P. Valdastri, J. L. Herder, A. Menciassi, P. Dario, “Modeling of a compliant joint in a magnetic levitation system for an endoscopic camera,” Mechanical Sciences, vol. 3, pp. 5-14, 2012, doi: https://doi.org/10.5194/ms-3-5-2012

S. Peter, G. A. Kragten, J. L. Herder, “Desing o fan underactuated finger with a monolithic structure and largely distributed compliance,” ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada, agosto 2010, vol. 2, pp. 355-363, doi: https://doi.org/10.1115/DETC2010-28127

Published

10-09-2024

How to Cite

State of the art review and analysis for compliant mechanisms: design methods and applications. (2024). Científica, 26(1), 1-14. https://doi.org/10.46842/ipn.cien.v26n1a08