Shielding calculation for sizing overhead transmission line structures
DOI:
https://doi.org/10.46842/ipn.cien.v29n2a03Keywords:
Transmission lines, high voltage, back flashoverAbstract
This research document describes a methodology for determining the shielding angle of overhead transmission lines using the electrogeometric model. The response of the overhead transmission line depends on the discharge point (conductor, guard wires or on the tower); when using the electrogeometric model, the location of the guard wires is optimized to drain the discharge to ground and avoid faults in the transmission line. A practical case of a double-circuit overhead transmission line with two guard wires, which operates at a voltage level of 230 kV, is presented. The results are consistent with those used in the 2B2-BD transmission structure standardized by the Federal Electricity Commission.
References
[1] C. Tort, S. Şahin, O. Hasançebi. “Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER,” Computers & Structures, vol. 179, pp. 75-94, Jan. 2017, available: http://dx.doi.org/10.1016/j.compstruc.2016.10.017
[2] H. Xue, M. Popov. “Analysis of switching transient overvoltages in the power system of floating production storage and offloading vessel,” Electric power systems research, vol. 115, pp. 3-10. Oct. 2014, available: http://dx.doi.org/10.1016/j.epsr.2014.01.021
[3] S. Hosseini, M. Mirzaie, T. Barforoshi, “Impact of surge arrester number and placement on reliability and lightning overvoltage level in high voltage substations,” International Journal of Electrical Power & Energy Systems, vol. 65, pp. 146-158. Fab. 2015, available: http://dx.doi.org/10.1016/j.ijepes.2014.09.037
[4] R. Shariatinasab, J. Gholinezhad. “The effect of grounding system modeling on lightning-related studies of transmission lines,” Journal of applied research and technology, vol. 15 no. 6, pp. 545-554. Dec. 2017, available: http://dx.doi.org/10.1016/j.jart.2017.06.003
[5] B. Franc, B. Filipović-Grčić, V. Milardić. “Lightning overvoltage performance of 110 kV air-insulated substation,” Electric Power Systems Research, vol. 138, pp. 78-84. Sep. 2016, available: http://doi.org/10.1016/j.epsr.2015.12.002
[6] Z. Yu, T. Zhu, Z. Wang, G. Lu, R. Zeng, Y. Liu, C. Zhuang. “Calculation and experiment of induced lightning overvoltage on power distribution line,” Electric Power Systems Research, vol. 139, pp. 52-59. Oct. 2016, available: http://doi.org/10.1016/j.epsr.2015.12.039
[7] N. Othman, M. Rohani, W. Mustafa, C. Wooi, A. Rosmi, N. Shakur, A. Shahriman. “An overview on overvoltage phenomena in power systems,” In IOP Conference Series: Materials Science and Engineering, vol. 557, no. 1, pp. 1-5. Jun. 2019, available: http://doi.org/10.1088/1757-899X/557/1/012013
[8] M. Trainba, C. Christodoulou, V. Vita, L. Ekonomou. “Lightning overvoltage and protection of power substations,” WSEAS Transactions on Power Systems, vol. 12, pp. 107-114. 2017, available: https://wseas.com/journals/ps/2017/a245816-080.pdf
[9] R. Rodrigues, V. Mendes, J. Catalão. “Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study,” Renewable energy, vol. 46, pp. 232-240. Oct. 2012, available: https://doi.org/10.1016/j.renene.2012.03.016
[10] J. Li, Measurement and analysis of overvoltages in power systems. John Wiley & Sons Singapore Pte Ltd, 2018, aviable: https://books.google.es/books?hl=es&lr=&id=fZlNDwAAQBAJ&oi=fnd&pg=PP2&dq=Overvoltages+of+atmospheric+origin&ots=qxNJdwDLTx&sig=jALqX2WvCgKaWDZiMxAuepldz3o#v=onepage&q=Overvoltages%20of%20atmospheric%20origin&f=false
[11] S. Bjelić, N. Marković, Z. Bogićević, I. Bjelić. “Application of Cauchy (Lipschitz) Criterion for Obtaining Theoretical Models of Atmosphere Striking Overvoltages”. Information Technology and Computer Science, vol. 9, pp. 20-30, Sep. 2019, available: http://dx.doi.org/10.5815/ijitcs.2019.09.03
[12] P. F. Salazar, “Diseño óptimo de apantallamiento de líneas de transmisión de alto voltaje y extra alto voltaje,” in 2019 XXVI Jornadas en Ingeniería Eléctrica y Electrónica-EPN, Quito. 2013, pp.12-18.
[13] Tort, C., Şahin, S., & Hasançebi, O. (2017). Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER. Computers & Structures, 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017
[14] Xue, H., & Popov, M. (2014). Analysis of switching transient overvoltages in the power system of floating production storage and offloading vessel. Electric Power Systems Research, 115, 3-10. https://doi.org/10.1016/j.epsr.2014.01.021
[15] Shariatinasab, R., & Gholinezhad, J. (2017). The effect of grounding system modeling on lightning-related studies of transmission lines. Journal of Applied Research and Technology, 15(6), 545-554. https://doi.org/10.1016/j.jart.2017.06.003
[16] Franc, B., Filipović-Grčić, B., & Milardić, V. (2016). Lightning overvoltage performance of 110 kV air-insulated substation. Electric Power Systems Research, 138, 78-84. https://doi.org/10.1016/j.epsr.2015.12.002
[17] Yu, Z., Zhu, T., Wang, Z., Lu, G., Zeng, R., Liu, Y., & Zhuang, C. (2016). Calculation and experiment of induced lightning overvoltage on power distribution line. Electric Power Systems Research, 139, 52-59. https://doi.org/10.1016/j.epsr.2015.12.039
[18] Salazar, P. F. (2013). Diseño óptimo de apantallamiento de líneas de transmisión de alto voltaje y extra alto voltaje. XXVI Jornadas en Ingeniería Eléctrica y Electrónica-EPN, Quito.
[19] Shafaei, A., Gholami, A., & Shariatinasab, R. (2012). Probabilistic evaluation of lightning performance of overhead transmission lines considering non-vertical strokes. Scientia Iranica, 19(3), 812-819. https://doi.org/10.1016/j.scient.2011.06.014
[20] Rodrigues, R., Mendes, V., & Catalão, J. (2012). Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study. Renewable Energy, 46, 232-240. https://doi.org/10.1016/j.renene.2012.03.016
[21] Li, J. (2018). Measurement and analysis of overvoltages in power systems. John Wiley & Sons Singapore Pte Ltd.
[22] Bjelić, S., Marković, N., Bogićević, Z., & Bjelić, I. (2019). Application of Cauchy (Lipschitz) Criterion for Obtaining Theoretical Models of Atmosphere Striking Overvoltages. Information Technology and Computer Science, 9, 20-30. https://doi.org/10.5815/ijitcs.2019.09.03
[23] IEEE Std. 1410, Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, 2004.
[24] A. Shafaei, A. Gholami, R. Shariatinasab. “Probabilistic evaluation of lightning performance of overhead transmission lines considering non-vertical strokes,” Scientia Iranica, vol. 19 no. 3, pp. 812-819. Jun. 2012, available: https://doi.org/10.1016/j.scient.2011.06.014
[25] Liu, L., Zhang, G., Zhu, Z., Wang, H., & Ma, Z. (2006). Atmospheric continuous filament discharge plasma (ACFDP) applied to crop sterilization. In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record-Abstracts (pp. 187-189). IEEE. https://doi.org/10.1109/PLASMA.2006.370654
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jorge Luis Aguilar Marin, Luis Cisneros Villalobos, Jorge Sánchez Jaime (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.