Cálculo de blindaje para dimensionamiento de estructuras de líneas de transmisión aéreas

Autores/as

DOI:

https://doi.org/10.46842/ipn.cien.v29n2a03

Palabras clave:

Líneas de transmisión, alta tensión, flameo inverso

Resumen

El presente documento de investigación describe una metodología para determinar el angulo de blindaje de líneas de transmisión aéreas mediante el modelo electrogeométrico. La respuesta de la línea de transmisión aérea está en función del punto de descarga (conductor,  cables de guarda o en la torre), al emplear el modelo electrogeométrico se optimiza la ubicación de los hilos de guarda para drenar la descarga a tierra y evitar fallas en la línea de transmisión. Se presenta un caso práctico de una línea de transmisión aérea de doble circuito y dos hilos de guarda, la cual opera a un nivel de tensión de 230 kV, los resultados son consistentes con los utilizados en la estructura de transmisión 2B2-BD normalizada por la Comisión Federal de Electricidad.

Referencias

[1] C. Tort, S. Şahin, O. Hasançebi. “Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER,” Computers & Structures, vol. 179, pp. 75-94, Jan. 2017, available: http://dx.doi.org/10.1016/j.compstruc.2016.10.017

[2] H. Xue, M. Popov. “Analysis of switching transient overvoltages in the power system of floating production storage and offloading vessel,” Electric power systems research, vol. 115, pp. 3-10. Oct. 2014, available: http://dx.doi.org/10.1016/j.epsr.2014.01.021

[3] S. Hosseini, M. Mirzaie, T. Barforoshi, “Impact of surge arrester number and placement on reliability and lightning overvoltage level in high voltage substations,” International Journal of Electrical Power & Energy Systems, vol. 65, pp. 146-158. Fab. 2015, available: http://dx.doi.org/10.1016/j.ijepes.2014.09.037

[4] R. Shariatinasab, J. Gholinezhad. “The effect of grounding system modeling on lightning-related studies of transmission lines,” Journal of applied research and technology, vol. 15 no. 6, pp. 545-554. Dec. 2017, available: http://dx.doi.org/10.1016/j.jart.2017.06.003

[5] B. Franc, B. Filipović-Grčić, V. Milardić. “Lightning overvoltage performance of 110 kV air-insulated substation,” Electric Power Systems Research, vol. 138, pp. 78-84. Sep. 2016, available: http://doi.org/10.1016/j.epsr.2015.12.002

[6] Z. Yu, T. Zhu, Z. Wang, G. Lu, R. Zeng, Y. Liu, C. Zhuang. “Calculation and experiment of induced lightning overvoltage on power distribution line,” Electric Power Systems Research, vol. 139, pp. 52-59. Oct. 2016, available: http://doi.org/10.1016/j.epsr.2015.12.039

[7] N. Othman, M. Rohani, W. Mustafa, C. Wooi, A. Rosmi, N. Shakur, A. Shahriman. “An overview on overvoltage phenomena in power systems,” In IOP Conference Series: Materials Science and Engineering, vol. 557, no. 1, pp. 1-5. Jun. 2019, available: http://doi.org/10.1088/1757-899X/557/1/012013

[8] M. Trainba, C. Christodoulou, V. Vita, L. Ekonomou. “Lightning overvoltage and protection of power substations,” WSEAS Transactions on Power Systems, vol. 12, pp. 107-114. 2017, available: https://wseas.com/journals/ps/2017/a245816-080.pdf

[9] R. Rodrigues, V. Mendes, J. Catalão. “Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study,” Renewable energy, vol. 46, pp. 232-240. Oct. 2012, available: https://doi.org/10.1016/j.renene.2012.03.016

[10] J. Li, Measurement and analysis of overvoltages in power systems. John Wiley & Sons Singapore Pte Ltd, 2018, aviable: https://books.google.es/books?hl=es&lr=&id=fZlNDwAAQBAJ&oi=fnd&pg=PP2&dq=Overvoltages+of+atmospheric+origin&ots=qxNJdwDLTx&sig=jALqX2WvCgKaWDZiMxAuepldz3o#v=onepage&q=Overvoltages%20of%20atmospheric%20origin&f=false

[11] S. Bjelić, N. Marković, Z. Bogićević, I. Bjelić. “Application of Cauchy (Lipschitz) Criterion for Obtaining Theoretical Models of Atmosphere Striking Overvoltages”. Information Technology and Computer Science, vol. 9, pp. 20-30, Sep. 2019, available: http://dx.doi.org/10.5815/ijitcs.2019.09.03

[12] P. F. Salazar, “Diseño óptimo de apantallamiento de líneas de transmisión de alto voltaje y extra alto voltaje,” in 2019 XXVI Jornadas en Ingeniería Eléctrica y Electrónica-EPN, Quito. 2013, pp.12-18.

[13] Tort, C., Şahin, S., & Hasançebi, O. (2017). Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER. Computers & Structures, 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017

[14] Xue, H., & Popov, M. (2014). Analysis of switching transient overvoltages in the power system of floating production storage and offloading vessel. Electric Power Systems Research, 115, 3-10. https://doi.org/10.1016/j.epsr.2014.01.021

[15] Shariatinasab, R., & Gholinezhad, J. (2017). The effect of grounding system modeling on lightning-related studies of transmission lines. Journal of Applied Research and Technology, 15(6), 545-554. https://doi.org/10.1016/j.jart.2017.06.003

[16] Franc, B., Filipović-Grčić, B., & Milardić, V. (2016). Lightning overvoltage performance of 110 kV air-insulated substation. Electric Power Systems Research, 138, 78-84. https://doi.org/10.1016/j.epsr.2015.12.002

[17] Yu, Z., Zhu, T., Wang, Z., Lu, G., Zeng, R., Liu, Y., & Zhuang, C. (2016). Calculation and experiment of induced lightning overvoltage on power distribution line. Electric Power Systems Research, 139, 52-59. https://doi.org/10.1016/j.epsr.2015.12.039

[18] Salazar, P. F. (2013). Diseño óptimo de apantallamiento de líneas de transmisión de alto voltaje y extra alto voltaje. XXVI Jornadas en Ingeniería Eléctrica y Electrónica-EPN, Quito.

[19] Shafaei, A., Gholami, A., & Shariatinasab, R. (2012). Probabilistic evaluation of lightning performance of overhead transmission lines considering non-vertical strokes. Scientia Iranica, 19(3), 812-819. https://doi.org/10.1016/j.scient.2011.06.014

[20] Rodrigues, R., Mendes, V., & Catalão, J. (2012). Protection of interconnected wind turbines against lightning effects: Overvoltages and electromagnetic transients study. Renewable Energy, 46, 232-240. https://doi.org/10.1016/j.renene.2012.03.016

[21] Li, J. (2018). Measurement and analysis of overvoltages in power systems. John Wiley & Sons Singapore Pte Ltd.

[22] Bjelić, S., Marković, N., Bogićević, Z., & Bjelić, I. (2019). Application of Cauchy (Lipschitz) Criterion for Obtaining Theoretical Models of Atmosphere Striking Overvoltages. Information Technology and Computer Science, 9, 20-30. https://doi.org/10.5815/ijitcs.2019.09.03

[23] IEEE Std. 1410, Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, 2004.

[24] A. Shafaei, A. Gholami, R. Shariatinasab. “Probabilistic evaluation of lightning performance of overhead transmission lines considering non-vertical strokes,” Scientia Iranica, vol. 19 no. 3, pp. 812-819. Jun. 2012, available: https://doi.org/10.1016/j.scient.2011.06.014

[25] Liu, L., Zhang, G., Zhu, Z., Wang, H., & Ma, Z. (2006). Atmospheric continuous filament discharge plasma (ACFDP) applied to crop sterilization. In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record-Abstracts (pp. 187-189). IEEE. https://doi.org/10.1109/PLASMA.2006.370654

Descargas

Publicado

10-10-2025

Número

Sección

Investigación

Cómo citar

Cálculo de blindaje para dimensionamiento de estructuras de líneas de transmisión aéreas. (2025). Científica, 29(2), 1-18. https://doi.org/10.46842/ipn.cien.v29n2a03